• Title/Summary/Keyword: SLAM(Simultaneous Localization & Mapping)Algorithm

Search Result 48, Processing Time 0.028 seconds

Onboard dynamic RGB-D simultaneous localization and mapping for mobile robot navigation

  • Canovas, Bruce;Negre, Amaury;Rombaut, Michele
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.617-629
    • /
    • 2021
  • Although the actual visual simultaneous localization and mapping (SLAM) algorithms provide highly accurate tracking and mapping, most algorithms are too heavy to run live on embedded devices. In addition, the maps they produce are often unsuitable for path planning. To mitigate these issues, we propose a completely closed-loop online dense RGB-D SLAM algorithm targeting autonomous indoor mobile robot navigation tasks. The proposed algorithm runs live on an NVIDIA Jetson board embedded on a two-wheel differential-drive robot. It exhibits lightweight three-dimensional mapping, room-scale consistency, accurate pose tracking, and robustness to moving objects. Further, we introduce a navigation strategy based on the proposed algorithm. Experimental results demonstrate the robustness of the proposed SLAM algorithm, its computational efficiency, and its benefits for on-the-fly navigation while mapping.

Omni-directional Visual-LiDAR SLAM for Multi-Camera System (다중 카메라 시스템을 위한 전방위 Visual-LiDAR SLAM)

  • Javed, Zeeshan;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.353-358
    • /
    • 2022
  • Due to the limited field of view of the pinhole camera, there is a lack of stability and accuracy in camera pose estimation applications such as visual SLAM. Nowadays, multiple-camera setups and large field of cameras are used to solve such issues. However, a multiple-camera system increases the computation complexity of the algorithm. Therefore, in multiple camera-assisted visual simultaneous localization and mapping (vSLAM) the multi-view tracking algorithm is proposed that can be used to balance the budget of the features in tracking and local mapping. The proposed algorithm is based on PanoSLAM architecture with a panoramic camera model. To avoid the scale issue 3D LiDAR is fused with omnidirectional camera setup. The depth is directly estimated from 3D LiDAR and the remaining features are triangulated from pose information. To validate the method, we collected a dataset from the outdoor environment and performed extensive experiments. The accuracy was measured by the absolute trajectory error which shows comparable robustness in various environments.

An Improved FastSLAM Algorithm using Fitness Sharing Technique (적합도 공유 기법을 적용한 향상된 FastSLAM 알고리즘)

  • Kwon, Oh-Sung;Hyeon, Byeong-Yong;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.487-493
    • /
    • 2012
  • SLAM(Simultaneous Localization And Mapping) is a technique used by robots and autonomous vehicles to build up a map within an unknown environment and estimate a place of robot. FastSLAM(A Factored Solution to the SLAM) is one of representative method of SLAM, which is based on particle filter and extended Kalman filter. However it is suffered from loss of particle diversity. In this paper, new approach using fitness sharing is proposed to supplement loss of particle diversity, compared and analyzed with existing methods.

Unmanned Aerial Vehicle Recovery Using a Simultaneous Localization and Mapping Algorithm without the Aid of Global Positioning System

  • Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.98-109
    • /
    • 2010
  • This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping (SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity's sake, a blimp-type of UAV model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated by a number of simulations.

A Simulation for Robust SLAM to the Error of Heading in Towing Tank (Unscented Kalman Filter을 이용한 Simultaneous Localization and Mapping 기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.339-346
    • /
    • 2006
  • Increased usage of autonomous underwater vehicle (AUV) has led to the development of alternative navigational methods that do not employ the acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small AUV. The SLAM is one of such alternative navigation methods for measuring the environment that the vehicle is passing through and providing relative position of AUV by processing the data from sonar measurements. A technique for SLAM algorithm which uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the AUV and objects. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the SLAM for associating the stored targets the sonar returns at each time step. The proposed SLAM algorithm is tested by simulations under various conditions. The results of the simulation show that the proposed SLAM algorithm is capable of estimating the position of the AUV and the object and demonstrates that the algorithm will perform well in various environments.

  • PDF

$H_{\infty}$ Filter Based Robust Simultaneous Localization and Mapping for Mobile Robots (이동로봇을 위한 $H_{\infty}$ 필터 기반의 강인한 동시 위치인식 및 지도작성 구현 기술)

  • Jeon, Seo-Hyun;Lee, Keon-Yong;Doh, Nakju Lett
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • The most basic algorithm in SLAM(Simultaneous Localization And Mapping) technique of mobile robots is EKF(Extended Kalman Filter) SLAM. However, it requires prior information of characteristics of the system and the noise model which cannot be estimated in accurate. By this limit, Kalman Filter shows the following behaviors in a highly uncertain environment: becomes too sensitive to internal parameters, mathematical consistency is not kept, or yields a wrong estimation result. In contrast, $H_{\infty}$ filter does not requires a prior information in detail. Thus, based on a idea that $H_{\infty}$ filter based SLAM will be more robust than the EKF-SLAM, we propose a framework of $H_{\infty}$ filter based SLAM and show that suggested algorithm shows slightly better result man me EKF-SLAM in a highly uncertain environment.

Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle (자율주행 장치를 위한 수정된 유전자 알고리즘을 이용한 경로계획과 특징 맵 기반 SLAM)

  • Kim, Jung-Min;Heo, Jung-Min;Jung, Sung-Young;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.381-387
    • /
    • 2009
  • This paper is presented simultaneous localization and mapping (SLAM) based on feature map and path-planning using modified genetic algorithm for efficient driving of autonomous vehicle. The biggest problem for autonomous vehicle from now is environment adaptation. There are two cases that its new location is recognized in the new environment and is identified under unknown or new location in the map related kid-napping problem. In this paper, SLAM based on feature map using ultrasonic sensor is proposed to solved the environment adaptation problem in autonomous driving. And a modified genetic algorithm employed to optimize path-planning. We designed and built an autonomous vehicle. The proposed algorithm is applied the autonomous vehicle to show the performance. Experimental result, we verified that fast optimized path-planning and efficient SLAM is possible.

Implementation and Evaluation of a Robot Operating System-based Virtual Lidar Driver (로봇운영체제 기반의 가상 라이다 드라이버 구현 및 평가)

  • Hwang, Inho;Kim, Kanghee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.10
    • /
    • pp.588-593
    • /
    • 2017
  • In this paper, we propose a LiDAR driver that virtualizes multiple inexpensive LiDARs (Light Detection and Ranging) with a smaller number of scan channels on an autonomous vehicle to replace a single expensive LiDAR with a larger number of scan channels. As a result, existing SLAM (Simultaneous Localization And Mapping) algorithms can be used with no modifications developed assuming a single LiDAR. In the paper, the proposed driver was implemented on the Robot Operating System and was evaluated with an existing SLAM algorithm. The results show that the proposed driver, combined with a filter to control the density of points in a 3D map, is compatible with the existing algorithm.

Symmetrical model based SLAM : M-SLAM (대칭모형 기반 SLAM : M-SLAM)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The mobile robot which accomplishes a work in explored region does not know location information of surroundings. Traditionally, simultaneous localization and mapping(SLAM) algorithms solve the localization and mapping problem in explored regions. Among the several SLAM algorithms, the EKF (Extended Kalman Filter) based SLAM is the scheme most widely used. The EKF is the optimal sensor fusion method which has been used for a long time. The odometeric error caused by an encoder can be compensated by an EKF, which fuses different types of sensor data with weights proportional to the uncertainty of each sensor. In many cases the EKF based SLAM requires artificially installed features, which causes difficulty in actual implementation. Moreover, the computational complexity involved in an EKF increases as the number of features increases. And SLAM is a weak point of long operation time. Therefore, this paper presents a symmetrical model based SLAM algorithm(called M-SLAM).

SLAM based on feature map for Autonomous vehicle (자율주행 장치를 위한 특징 맵 기반 SLAM)

  • Kim, Jung-Min;Jung, Sung-Young;Jeon, Tae-Ryong;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1437-1443
    • /
    • 2009
  • This paper is presented an simultaneous localization and mapping (SLAM) algorithm using ultrasonic for robot and electric compass, encoder, and gyro. Generally, localization based upon electric compass, encoder, and gyro can be measured just local position in workspace. However, actual robot must need an information of the absolute position in workspace to perform its mission, Absolute position in workspace could be calculated using SLAM algorithm. To implement SLAM in this paper, a map is built using ultrasonic sensor and hierarchical map building method. And then, we the map will be transformed into a feature map. The absolute position could be calculated using the feature map and map mapping method. As a test bed, we designed and construct an autonomous robot and showed the experimental performance of the proposed SLAM algorithm based on feature map. Experimental result, we verified that robot can found all absolute position on experiments using proposed SLAM algorithm.