Abstract
This paper is presented simultaneous localization and mapping (SLAM) based on feature map and path-planning using modified genetic algorithm for efficient driving of autonomous vehicle. The biggest problem for autonomous vehicle from now is environment adaptation. There are two cases that its new location is recognized in the new environment and is identified under unknown or new location in the map related kid-napping problem. In this paper, SLAM based on feature map using ultrasonic sensor is proposed to solved the environment adaptation problem in autonomous driving. And a modified genetic algorithm employed to optimize path-planning. We designed and built an autonomous vehicle. The proposed algorithm is applied the autonomous vehicle to show the performance. Experimental result, we verified that fast optimized path-planning and efficient SLAM is possible.
본 논문에서는 자율주행 장치의 효율적인 자율주행을 위한 특징 맵 기반 SLAM(simultaneous localization and mapping)과 수정된 유전자 알고리즘을 이용한 경로계획을 제안하였다. 현재 연구되고 있는 자율주행 장치들에 있어서 가장 큰 문제점 중 하나는 환경 적응성이다. 이는 새로운 환경에서 자신의 위치를 인식해야 하는 경우와 "kid napping" 문제와 연계되어 자율주행 장치가 새로운 위치 혹은 알려지지 않은 위치에서 자신의 위치를 인식해야하는 경우로 구분된다. 본 논문에서는 이러한 환경 적응성 문제를 해결하기 위해 초음파 센서를 이용한 특징맵 기반 SLAM을 적용하였으며, 지능형 자율주행 장치의 효율적인 주행을 위해 수정된 유전자 알고리즘(genetic algorithm: GA)을 적용한다. 본 논문에서는 성능을 분석하기 위해 직접 설계 제작한 자율주행 장치를 대상으로 임의의 위치에서 자율주행 장치 스스로 자신의 위치를 인식한 후, 주어진 작업을 수행하기 위해 유전자 알고리즘을 통하여 최적화 된 경로를 따라 주행하는 가를 실험하였다. 실험 결과, 빠르고 최적화된 경로계획과 효율적인 SLAM이 가능함을 확인 할 수 있었다.