DOI QR코드

DOI QR Code

An Improved FastSLAM Algorithm using Fitness Sharing Technique

적합도 공유 기법을 적용한 향상된 FastSLAM 알고리즘

  • 권오성 (서경대학교 전자공학과) ;
  • 현병용 (서경대학교 전자공학과) ;
  • 서기성 (서경대학교 전자공학과)
  • Received : 2012.04.20
  • Accepted : 2012.07.06
  • Published : 2012.08.25

Abstract

SLAM(Simultaneous Localization And Mapping) is a technique used by robots and autonomous vehicles to build up a map within an unknown environment and estimate a place of robot. FastSLAM(A Factored Solution to the SLAM) is one of representative method of SLAM, which is based on particle filter and extended Kalman filter. However it is suffered from loss of particle diversity. In this paper, new approach using fitness sharing is proposed to supplement loss of particle diversity, compared and analyzed with existing methods.

SLAM(Simultaneous Localization And Mapping)은 주변 환경에 대한 지도 작성과 자신의 위치를 인식하는 기법으로 주행 로봇 분야에서 널리 사용되고 있다. FastSLAM(A Factored Solution to the SLAM)은 파티클 필터와 확장형 칼만 필터를 기반으로 한 대표적인 SLAM 기법중의 하나이나, 재추출 단계에서 입자들의 다양성이 상실되는 문제가 제기되고 있다. 본 논문에서는 적합도 공유기법을 사용하여 입자들의 다양성 상실에 관한 문제를 보완하는 방법을 제시하고, 기존의 기법들과 성능을 비교 및 분석한다.

References

  1. S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, MIT Press, Cambridge, 2005.
  2. M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba, "A solution to the simultaneous localization and map building (SLAM) problem," IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229-241, 2001. https://doi.org/10.1109/70.938381
  3. 김륜석, 최혁두, 김은태, "측정 아웃라이어 제거를 통해 개선된 GraphSLAM," 한국지능시스템학회 논문지, vol. 21, no.4, pp.493-498, 2011. https://doi.org/10.5391/JKIIS.2011.21.4.493
  4. 최철희, 최병재, "실내 환경에서의 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구," 한국지능시스템학회 논문지, vol. 21, no. 4, pp. 442-448, 2011.
  5. R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transactions of the ASME-Journal of Basic Engineering, vol. 82, pp.35-45, 1960. https://doi.org/10.1115/1.3662552
  6. L. M. Paz, J. D. Tardos, and J. Neira, "Divide and Conquer: EKF SLAM in O(n)," IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1107-1120, 2008. https://doi.org/10.1109/TRO.2008.2004639
  7. M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, "FastSLAM: A Factored Solution to the Simultaneous Localization And Mapping Problem," Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593-598, 2002.
  8. T. Baily, J. Nieto, and E. Nebot, "Consistency of the FastSLAM Algorithm," Proceedings of the IEEE International Conference on Robotics and Automation, pp. 424-429, 2006.
  9. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel Approach to Nonlinear/non-gaussian Bayesian State Estimation," IEE Proceedings F on Radar and Signal Processing, vol. 140, no. 2. pp. 107-113, 1993. https://doi.org/10.1049/ip-f-2.1993.0015
  10. N. Kwak, K. Yokoi and L. Beom-Hee, "Analysis of Rank-Based Resampling based on Particle Diversity in the Rao-Blackwellized Particle Filter for Simultaneous Localization and Mapping," Advanced Robotics, vol. 24, no. 4, pp. 585-604, 2010. https://doi.org/10.1163/016918610X487126
  11. 현병용, 권오성, 서기성, "적합도 공유 기법을 적용한 향상된 FastSLAM 알고리즘," 한국지능시스템학회, 2012춘계학술대회 논문집, vol. 22, no. 1, pp. 17-18, 2012. 4.
  12. B. Sareni, L. Krahenbuhl, "Fitness Sharing and Niching Methods Revisited," IEEE Transactions on Evolutionary Comutation, vol. 2, no. 3, pp. 97-106 1998. https://doi.org/10.1109/4235.735432

Cited by

  1. Searching Methods of Corresponding Points Robust to Rotational Error for LRF-based Scan-matching vol.26, pp.6, 2016, https://doi.org/10.5391/JKIIS.2016.26.6.505