• 제목/요약/키워드: SEI film

검색결과 74건 처리시간 0.019초

전해액 첨가제가 흑연 음극의 저온특성에 미치는 영향 (The Roles of Electrolyte Additives on Low-temperature Performances of Graphite Negative Electrode)

  • 박상진;류지헌;오승모
    • 전기화학회지
    • /
    • 제15권1호
    • /
    • pp.19-26
    • /
    • 2012
  • 표준 전해액에 2중량%의 VC(vinylene carbonate)와 FEC(fluoroethylene carbonate)를 각각 첨가한 전해액으로부터 흑연 음극 표면에 SEI(solid electrolyte interphase) 층을 형성시키고, SEI 특성에 따른 흑연 음극의 저온($-30^{\circ}C$) 충방전 특성을 조사하였다. 흑연의 충 방전 용량은 FEC를 첨가한 전해액, 표준 전해액, 그리고 VC를 첨가한 전해액의 순서로 감소하였고, 충 방시 발생하는 과전압은 반대경향을 보이며 증가하였다. 이는 첨가제의 종류에 따라 생성된 SEI 층의 저항과 전하전달저항에 차이가 있음을 설명하는데, 이를 SEI 층의 화학 조성과 두께를 비교하여 확인하였다. 표준 전해액으로부터 생성된 SEI 층은 C-O 성분을 포함하는 고분자 형태의 화합물과 리튬 염의 환원분해로 생성된 $Li_xPF_yO_z$ 등으로 구성되었다. VC를 포함한 전해액으로부터 생성된 SEI 층은 C-O 화합물 비율이 높고 조밀하여 리튬 염의 분해가 억제되어 얇은 피막이 생성됨에도 불구하고 가장 큰 저항 값을 보였다. 반면에 FEC로부터 생성된 SEI 층은 C-O 성분의 비율이 VC를 첨가한 전해액의 경우보다는 작으면서도 리튬 염의 분해가 크지 않아서, 리튬 이온의 이동이 가장 용이한 피막을 형성하고 있어 가장 낮은 피막저항 및 전하전달 저항을 나타내었다. 결론적으로 FEC를 첨가제로 사용한 경우 생성된 SEI 층의 저항이 가장 작아서 흑연 음극의 저온특성이 가장 우수하였다.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

탄소 부극에서 초기 충전온도별 부동태 피막 형성에 대한 연구 (Studies on Formation of Passivation Film on KMFC Anode with Initial Charge Temperature)

  • 박동원;김우성;최용국
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.507-512
    • /
    • 2005
  • 리튬 이온 2차 전지의 부극으로 사용되는 탄소전극은 초기 충전시 전극 표면에 Solid Electrolyte Interphase (SEI)라고 불리는 부동태 피막을 형성한다. 초기 충전과정에서의 용매분해로 형성된 막은 충방전 용량에 큰 영향을 주는 것으로 조사되었다. 본 연구에서는 Kawasaki Mesophase Fine Carbon 부극과 1 M $LiPF_6,EC:DEC$ (1:1, 부피비)에 $Li_2CO_3$를 첨가하여 전극/전해질 계면에서 초기충전 온도에 따라 형성되는 부동태 피막의 전기화학적 특성을 시간대 전압법, 순환 전압-전류법, 임피던스법을 이용하여 조사하였다. 관찰된 결과에 따르면, 용매분해 반응이 일어날 때 리튬 이온의 전도도에 따라 용매분해 전위가 달라졌으며, 저온으로 갈수록 $Li^+$ 이온의 전도성이 떨어져 분해 전위 차이가 나타남을 알았다. 또한 여러 온도조건에서 초기 충전시 형성된 피막의 저항은 온도별로 달라짐을 확인하였다.

Enhancement of Quick-Charge Performance by Fluoroethylene Carbonate additive from the Mitigation of Electrode Fatigue During Normal C-rate Cycling

  • Tae Hyeon Kim;Sang Hyeong Kim;Sung Su Park;Min Su Kang;Sung Soo Kim;Hyun-seung Kim;Goojin Jeong
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.369-376
    • /
    • 2023
  • The quick-charging performance of SiO electrodes is evaluated with a focus on solid electrolyte interphase (SEI)-reinforcing effects. The study reveals that the incorporation of fluoroethylene carbonate (FEC) into the SiO electrode significantly reduced the electrode fatigue, which is from the the viscoelastic properties of the FEC-derived SEI film. The impact of FEC is attributed to its ability to minimize the mechanical failure of the electrode caused by additional electrolyte decomposition. This beneficial outcome arises from volumetric stain-tolerant characteristics of the FEC-derived SEI film, which limited exposure of the bare SiO surface during 0.5 C-rate cycling. Notably, FEC greatly improves Li deposition during quick-charge cycles following aging at 0.5 C-rate cycling due to its ability to maintain a strong electrical connection between active materials and the current collector, even after extended cycling. Given these findings, we assert that mitigating SEI layer deterioration, which compromises the electrode structure, is vital. Hence, enhancing the interfacial attributes of the SiO electrode becomes crucial for maintaining kinetic efficiency of battery system.

Novel estimation method of operating life in lithium-ion pouch cells

  • Kim, Hyosung;Kim, Jaekwang;Kim, Nayeong;Lee, Ilbok;Hwang, Keebum;Bae, Joongho;Yoon, Songhun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.266-275
    • /
    • 2018
  • Herein, a novel operating life (OL) test method was evaluated with 200 mAh pouch-type lithium-ion batteries. By combining the calendar life (CL) test with intermediate pulse power cycling, more realistic life prediction was possible, which encompassed real operation of batteries accompanying with thermal acceleration. Larger capacity decrease and resistance increase of pouch cell were observed in the OL test, which was well explained using the SEI film growth model. After dissemble of pouch cell, capacity loss and resistance increase mostly occurred within anode, reflecting that SEI film growth on anode surface was highly attributable to cell degradation.

리튬이온전지의 유기용매분해에 따른 SEI film 형성과 전기화학적 거동에 관한 연구 (A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior)

  • 김민성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M $LiPF_6$ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M $LiPF_6$ DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M $LiPF_6$ EC/DEC(1/2 by vol%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC,DMC and EMC brought the de-decomposition peak of salt anion of $PF_6$ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. $Li/Li^+$). In addition, a kinetics current peak, in which intercalation of Lt is proceeded at 750mV, 450mV(vs. $Li/Li^+$), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance($R_{ct}$) according to the electric potential of $Li^+$ intercalation at 750mV(vs. $Li/Li^+$), which was the same as the resistance ($R_f$) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance($R_p$) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

리튬이온전지의 유기용매분해에 따른 SEI film형성과 전기화학적 거동에 관한 연구 (A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior)

  • 김민성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M LiPF$\sub$6/ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M LiPF$\sub$6/DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M LiPF$\sub$6/ EC/DEC(1/2 by vo%%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC, DMC and EMC brought the de-decomposition peak of salt anion of PF$\sub$6/$\^$-/ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. Li/Li$\^$+/\`). In addition, a kinetics current peak, in which intercalation of Li$\^$+/ is proceeded at 750mv, 450mv(vs. Li/Li$\^$+/), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance(R$\sub$ct/) according to the electric potential of Li$\^$+/ intercalation at 750mv(vs. Li/Li$\^$+/), which was the same as the resistance (R$\sub$f/) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance(R$\sub$p/) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

전해질 첨가제에 따른 graphite 음극의 SEI분석 및 전기 화학적 특성 고찰 (Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives)

  • 이성진;차은희;임수아
    • 전기화학회지
    • /
    • 제19권3호
    • /
    • pp.69-79
    • /
    • 2016
  • 높은 에너지 밀도를 지닌 리튬 이온 전지는 현재 리튬 이온 전지에 상용화된 음극 활물질인 천연 흑연의 보다 높은 율 별 특성과 안정한 장수 명 특성을 요구하고 있다. 천연 흑연계 음극 활물질을 이용하여 리튬 전지 음극을 제작하여, SEI 피막의 형성 및 제어의 대표적인 전해질 첨가제인 VC (vinylene carbonate), VEC (vinyl ethylene carbonate), FEC (fluoroethylene carbonate)등의 다양한 첨가제를 사용하여 초기 반응에 의해 생성되는 SEI 피막을 분석하고 이에 따른 전기 화학 특성 변화를 측정하기 위하여 SEM, EVS (electorochemical voltage spectroscopy), 피막 분석, EIS (electrochemical impedance spectroscopy), FT-IR (Fourier transform infrared spectroscopy)등을 측정하여, 고온 수명 평가, 용량 유지율 및 성능 평가를 실시하여, $0^{\circ}C$ 수명특성 이후의 음극에 대한 분석을 비교 및 분석 평가 하였다. 초기 충전 시 profile에서 SEI의 형성에 의한 변화를 나타냈으며, EVS를 통하여 No-Additive가 약 0.9 V에서 SEI의 형성이 이루어지지만, VC, VEC, FEC의 경우 1 V 이상에서 형성반응이 이루어졌다. $60^{\circ}C$ 수명특성평가에서 초기 효율은 No-Additive가 가장 높게 나타나며 용량 유지율이 높게 나타났으나, cycle이 진행 될수록 충전 시 용량과 효율이 감소하여 VC, FEC보다 용량 유지율이 낮아졌고, VEC는 효율 및 용량 유지율 모두 성능이 가장 낮게 나타났다. SEM을 통하여 SEI의 변화를 확인할 수 없었지만, FT-IR을 통하여 SEI의 성분이 cycle이 진행이 될수록 첨가제에 의해 $2850-2900cm^{-1}$영역의 Alkyl carbonate ($RCO_2Li$) 계열의 성분이 더욱 견고하게 유지되는 것을 확인하였으며, EIS를 통하여 cycle이 진행될수록 저항은 증가하는 것으로 나타났고, 특히 No-Additive 및 VEC의 SEI에 의한 저항이 매우 커졌다는 것을 알 수 있었다.

Specpure Nikel의 Oxidation (The Oxidation of Specpure Nickel)

  • 최재시;신수희;이규용
    • 대한화학회지
    • /
    • 제10권4호
    • /
    • pp.153-157
    • /
    • 1966
  • 순수한 nickel의 酸化에 대하여 大氣中에서와 各種 酸素壓力下 $500^{\circ}{\sim}800^{\circ}C$에서 石英製 微量天秤을 使用하여 그 速度를 測定하였다. Nickel의 速度常數는 Parabolick rate Law에 의하여 계산하였다. 活性化 에너지는 Arrhenius式에 의하여 구하였으며 ${\Delta}E^*=35.4{\pm}$1.5 Kcal/mole을 얻었다. Nickel酸化에서 酸化速度常數는 酸素壓力의 1/4.93乘에 比例함을 확인하였고 Nickel의 酸化機構는 Oxide Film에 용해되어 과잉으로 存在하는 酸素에 의해서 形成된 陽이온 Vacancy (空位)에 依存한다는 結論에 도달하였다.

  • PDF

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.