DOI QR코드

DOI QR Code

The Roles of Electrolyte Additives on Low-temperature Performances of Graphite Negative Electrode

전해액 첨가제가 흑연 음극의 저온특성에 미치는 영향

  • Park, Sang-Jin (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University) ;
  • Ryu, Ji-Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Oh, Seung-Mo (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
  • 박상진 (서울대학교 화학생물공학부 및 WCU 프로그램(C2E2)) ;
  • 류지헌 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 오승모 (서울대학교 화학생물공학부 및 WCU 프로그램(C2E2))
  • Received : 2011.11.30
  • Accepted : 2011.12.20
  • Published : 2012.02.28

Abstract

SEI (solid electrolyte interphase) layers are generated on a graphite negative electrode from three different electrolytes and low-temperature ($-30^{\circ}C$) charge/discharge performance of the graphite electrode is examined. The electrolytes are prepared by adding 2 wt% of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) into a standard electrolyte solution. The charge-discharge capacity of graphite electrode shows the following decreasing order; FEC-added one>standard>VC-added one. The polarization during a constant-current charging shows the reverse order. These observations illustrate that the SEI film resistance and charge transfer resistance differ according to the used additives. This feature has been confirmed by analyzing the chemical composition and thickness of three SEI layers. The SEI layer generated from the standard electrolyte is composed of polymeric carbon-oxygen species and the decomposition products ($Li_xPF_yO_z$) of lithium salt. The VC-derived surface film shows the largest resistance value even if the salt decomposition is not severe due to the presence of dense film comprising C-O species. The FEC-derived SEI layer shows the lowest resistance value as the C-O species are less populated and salt decomposition is not serious. In short, the FEC-added electrolyte generates the SEI layer of the smallest resistance to give the best low-temperature performance for the graphite negative electrode.

표준 전해액에 2중량%의 VC(vinylene carbonate)와 FEC(fluoroethylene carbonate)를 각각 첨가한 전해액으로부터 흑연 음극 표면에 SEI(solid electrolyte interphase) 층을 형성시키고, SEI 특성에 따른 흑연 음극의 저온($-30^{\circ}C$) 충방전 특성을 조사하였다. 흑연의 충 방전 용량은 FEC를 첨가한 전해액, 표준 전해액, 그리고 VC를 첨가한 전해액의 순서로 감소하였고, 충 방시 발생하는 과전압은 반대경향을 보이며 증가하였다. 이는 첨가제의 종류에 따라 생성된 SEI 층의 저항과 전하전달저항에 차이가 있음을 설명하는데, 이를 SEI 층의 화학 조성과 두께를 비교하여 확인하였다. 표준 전해액으로부터 생성된 SEI 층은 C-O 성분을 포함하는 고분자 형태의 화합물과 리튬 염의 환원분해로 생성된 $Li_xPF_yO_z$ 등으로 구성되었다. VC를 포함한 전해액으로부터 생성된 SEI 층은 C-O 화합물 비율이 높고 조밀하여 리튬 염의 분해가 억제되어 얇은 피막이 생성됨에도 불구하고 가장 큰 저항 값을 보였다. 반면에 FEC로부터 생성된 SEI 층은 C-O 성분의 비율이 VC를 첨가한 전해액의 경우보다는 작으면서도 리튬 염의 분해가 크지 않아서, 리튬 이온의 이동이 가장 용이한 피막을 형성하고 있어 가장 낮은 피막저항 및 전하전달 저항을 나타내었다. 결론적으로 FEC를 첨가제로 사용한 경우 생성된 SEI 층의 저항이 가장 작아서 흑연 음극의 저온특성이 가장 우수하였다.

Keywords

References

  1. E. J. Plichta, M. Hendrickson, R. Thompson, G. Au, W. K. Behl, M. C. Smart, B. V. Ratnakumar, and S. Surampudi, 'Development of low temperature Li-ion electrolytes for NASA and DoD applications' J. Power Sources, 94, 160 (2001). https://doi.org/10.1016/S0378-7753(00)00578-4
  2. H. p. Lin, D. Chua, M. Salomon, H. C. Shiao, M. Hendrickson, E. Plichta, and S. Slane, 'Low-Temperature Behavior of Li-Ion Cells' Electrochem. Solid-state Lett., 4, A71 (2001). https://doi.org/10.1149/1.1368736
  3. E. J. Plichta and W. K. Behl, 'A low-temperature electrolyte for lithium and lithium-ion batteries' J. Power Sources, 88, 192 (2000). https://doi.org/10.1016/S0378-7753(00)00367-0
  4. M. C. Smart, B. V. Ratnakumar, and S. Surampudi, 'Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates' J. Electrochem. Soc., 146, 486 (1999). https://doi.org/10.1149/1.1391633
  5. C. K. Huang, J. S. Sakamoto, J. Wolfenstine, and S. Surampudi, 'The Limits of Low-Temperature Performance of Li-Ion Cells' J. Electrochem. Soc., 147, 2893 (2000). https://doi.org/10.1149/1.1393622
  6. S. S. Zhang, K. Xu, and T. R. Jow, 'Low temperature performance of graphite electrode in Li-ion cells' Electrochim. Acta, 48, 241 (2002). https://doi.org/10.1016/S0013-4686(02)00620-5
  7. B. V. Ratnakumar, M. C. Smart, and S. Surampudi, 'Effects of SEI on the kinetics of lithium intercalation' J. Power Sources, 97-98, 137 (2001).
  8. C. Wang, A. J. Appleby, and F. E. Little, 'Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement' J. Electrochem. Soc., 149, A754 (2002). https://doi.org/10.1149/1.1474427
  9. J. H. Ryu, E. Y. Oh, and S. M. Oh, 'Charge/discharge capacity of natural graphite anode according to the charge/discharge rate in lithium secondary batteries' J. Korean Electrochem. Soc., 7, 32 (2004). https://doi.org/10.5229/JKES.2004.7.1.032
  10. K. C. Moller, H. J. Santner, W. Kern, S. Yamaguchi, J. O. Besenhard, and M. Winter, 'In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives' J. Power Sources, 119-121, 561 (2003). https://doi.org/10.1016/S0378-7753(03)00289-1
  11. O. Matsuoka, A. Hiwara, T. Omi, M. Toriida, T. Hayashi, C. Tanaka, Y. Saito, T. Ishida, H. Tan, S. S. Ono, and S. Yamamoto, 'Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell' J. Power Sources, 108, 128 (2002). https://doi.org/10.1016/S0378-7753(02)00012-5
  12. S. K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, and Z. Ogumi, 'Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions' Langmuir, 17, 8281 (2001). https://doi.org/10.1021/la015553h
  13. Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, 'Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film' Langmuir, 25, 12766 (2009). https://doi.org/10.1021/la901829v
  14. K. Xu, '"Charge-Transfer" Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li+ in Nonaqueous Electrolytes' J. Electrochem. Soc., 154, A162 (2007). https://doi.org/10.1149/1.2409866
  15. T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, and Z. Ogumi, 'Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries' J. Electrochem. Soc., 152, A2151 (2005). https://doi.org/10.1149/1.2042907
  16. T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, 'Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte' J. Electrochem. Soc., 151, A1120 (2004). https://doi.org/10.1149/1.1763141
  17. Y.-C. Lu, A. N. Mansour, N. Yabuuchi, and Y. Shao-Horn, 'Probing the Origin of Enhanced Stability of "$AlPO_4$" Nanoparticle Coated $LiCoO_2$ during Cycling to High Voltages: Combined XRD and XPS Studies' Chem. Mat., 21, 4408 (2009). https://doi.org/10.1021/cm900862v
  18. L. El Clualtania, R. Dedryvere, J. B. Ledeuil, C. Siret, P. Biensan, J. Desbrieres, and D. Gonbeau, 'Surface film formation on a carbonaceous electrode: Influence of the binder chemistry' J. Power Sources, 189, 72 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.031
  19. L. Chen, K. Wang, X. Xie, and J. Xie, 'Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries' J. Power Sources, 174, 538 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.149
  20. R. Dedryvere, L. Gireaud, S. Grugeon, S. Laruelle, J. M. Tarascon, and D. Gonbeau, 'Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study' J. Phys. Chem. B, 109, 15868 (2005). https://doi.org/10.1021/jp051626k
  21. S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries' J. Power Sources, 162, 1379 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074
  22. H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, 'Analysis of vinylene carbonate derived SEI layers on graphite anode' J. Electrochem. Soc., 151, A1659 (2004). https://doi.org/10.1149/1.1785795
  23. D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002). https://doi.org/10.1016/S0013-4686(01)00858-1
  24. S. Park, J. H. Ryu, and S. M. Oh, 'Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode' J. Electrochem. Soc., 158, A498 (2011). https://doi.org/10.1149/1.3561424

Cited by

  1. Effect of fluoroethylene carbonate on electrochemical battery performance and the surface chemistry of amorphous MoO2 lithium-ion secondary battery negative electrodes vol.132, 2014, https://doi.org/10.1016/j.electacta.2014.03.173
  2. Lactam derivatives as solid electrolyte interphase forming additives for a graphite anode of lithium-ion batteries vol.244, 2013, https://doi.org/10.1016/j.jpowsour.2012.11.115
  3. A Comparative Study on Thermal Stability of Two Solid Electrolyte Interphase (SEI) Films on Graphite Negative Electrode vol.160, pp.9, 2013, https://doi.org/10.1149/2.095309jes
  4. Thermal Behavior of Solid Electrolyte Interphase Films Deposited on Graphite Electrodes with Different States-of-Charge vol.162, pp.6, 2015, https://doi.org/10.1149/2.0431506jes