DOI QR코드

DOI QR Code

Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives

전해질 첨가제에 따른 graphite 음극의 SEI분석 및 전기 화학적 특성 고찰

  • Lee, Sung Jin (Korea Electronics Technology Institute) ;
  • Cha, Eun Hee (Dept. of pharmaceutical engineering, Hoseo University) ;
  • Lim, Soo A (CheilJedang Bio OMICS Analysis Team)
  • Received : 2016.02.29
  • Accepted : 2016.03.02
  • Published : 2016.08.31

Abstract

Lithium ion battery with high energy density is expanding its application area to electric automobile and electricity storage field beyond existing portable electric devices. Such expansion of an application field is demanding higher characteristic and stable long life characteristic of an anode material, the natural graphite that became commercialized in lithium ion battery. This thesis produced cathode by using natural graphite anode material, analyzed creation of the cathode SEI film created due to initial reaction by using electrolyte additives, VC (vinylene carbonate), VEC (vinyl ethylene carbonate), and FEC (fluoroethylene carbonate), and considered correlation with the accompanying electrochemical transformation. This study compared and analyzed the SEI film variation of natural graphite cathode according to the electrolyte additive with SEI that is formed at the time of initial filling and cathode of $60^{\circ}C$ life characteristic. At the time of initial filling, the profile showed changes due to the SEI formation, and SEI was formed in No-Additive in approximately 0.9 V through EVS, but for VC, VEC, and FEC, the formation reaction was created above 1 V. In $60^{\circ}C$ lifespan characteristic evaluation, the initial efficiency was highest in No-Additive and showed high contents percentage, but when cycle was progressed, the capacity maintenance rate decreased more than VC and FEC as the capacity and efficiency at the time of filling decreased, and VEC showed lowest performance in efficiency and capacity maintenance rate. Changes of SEI could not be verified through SEM, but it was identified that as the cycle of SEI ingredients was progressed through FT-IR, ingredients of Alkyl carbonate ($RCO_2Li$) affiliation of the $2850-2900cm^{-1}$ was maintained more solidly and the resistance increased as cycle was progressed through EIS, and specially, it was identified that the resistance due to No-Additive and SEI of VEC became very significant. Continuous loss of additives was verified through GC-MS, and the loss of additives from partial decomposition and remodeling of SEI formed the non-uniform surface of SEI and is judged to be the increase of resistance.

높은 에너지 밀도를 지닌 리튬 이온 전지는 현재 리튬 이온 전지에 상용화된 음극 활물질인 천연 흑연의 보다 높은 율 별 특성과 안정한 장수 명 특성을 요구하고 있다. 천연 흑연계 음극 활물질을 이용하여 리튬 전지 음극을 제작하여, SEI 피막의 형성 및 제어의 대표적인 전해질 첨가제인 VC (vinylene carbonate), VEC (vinyl ethylene carbonate), FEC (fluoroethylene carbonate)등의 다양한 첨가제를 사용하여 초기 반응에 의해 생성되는 SEI 피막을 분석하고 이에 따른 전기 화학 특성 변화를 측정하기 위하여 SEM, EVS (electorochemical voltage spectroscopy), 피막 분석, EIS (electrochemical impedance spectroscopy), FT-IR (Fourier transform infrared spectroscopy)등을 측정하여, 고온 수명 평가, 용량 유지율 및 성능 평가를 실시하여, $0^{\circ}C$ 수명특성 이후의 음극에 대한 분석을 비교 및 분석 평가 하였다. 초기 충전 시 profile에서 SEI의 형성에 의한 변화를 나타냈으며, EVS를 통하여 No-Additive가 약 0.9 V에서 SEI의 형성이 이루어지지만, VC, VEC, FEC의 경우 1 V 이상에서 형성반응이 이루어졌다. $60^{\circ}C$ 수명특성평가에서 초기 효율은 No-Additive가 가장 높게 나타나며 용량 유지율이 높게 나타났으나, cycle이 진행 될수록 충전 시 용량과 효율이 감소하여 VC, FEC보다 용량 유지율이 낮아졌고, VEC는 효율 및 용량 유지율 모두 성능이 가장 낮게 나타났다. SEM을 통하여 SEI의 변화를 확인할 수 없었지만, FT-IR을 통하여 SEI의 성분이 cycle이 진행이 될수록 첨가제에 의해 $2850-2900cm^{-1}$영역의 Alkyl carbonate ($RCO_2Li$) 계열의 성분이 더욱 견고하게 유지되는 것을 확인하였으며, EIS를 통하여 cycle이 진행될수록 저항은 증가하는 것으로 나타났고, 특히 No-Additive 및 VEC의 SEI에 의한 저항이 매우 커졌다는 것을 알 수 있었다.

Keywords

References

  1. K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, 'Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries' Science, 311, 977 (2006). https://doi.org/10.1126/science.1122152
  2. S. Shi, C. Ouyang, M. Lei, and W. Tang, 'Effect of Mg doping on the Structural and Electronic Properties of LiCoO2: A First-principles Investigation' J. Power Sources, 111, 908 (2007).
  3. Z. Ogumi and M. Inaba, 'Electrochemical Lithium Intercalation within Carbonaceous Materials: Intercalation Processes, Surface Film Formation, and Lithium Diffusion' Bull. Chem. Soc., Jpn. 71 (1998).
  4. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, 'Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction', J. Power Sources, 175, 540 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.065
  5. H. K. Oh, '리튬2차전지에 관한 동향 분석' Kisti (2005).
  6. M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Carbon 'Recent development of carbon materials for Li ion batteries', 38, 183(2000). https://doi.org/10.1016/S0008-6223(99)00141-4
  7. S. Yata, H. Kinoshita, M. Komori, N. Ando, A. Anekawa, and T. Hashimoto, 'Extended Abstracts of 60th Annual Meeting of the Electrochemical Society of Japan', Tokyo, Japan, 2G09 (1993).
  8. M. S. Park 'A study on a electrochemical properties of the Si-Ni-C Composite as an anode material for lithium ion battery by ball-milling process.' Master thesis, KIST (2005).
  9. M. Noel and R. Santhanam, 'Electrochemistry of graphite intercalation compounds', J. Power Sources, 72, 53 (1998). https://doi.org/10.1016/S0378-7753(97)02675-X
  10. Lan Yu, K. J. Kim, D. Y. Park, M. S. Kim, K. I. Kim, and Y. S. Lim, 'Preparation and Characterization of Pitch/Cokes Composite Anode Material for High Power Lithium Secondary Battery', 9, 3, 210 (2008). https://doi.org/10.5714/CL.2008.9.3.210
  11. H. Zheng and M.-S. Kim, 'Performance of modified graphite as anode material for lithoum-ion secondary battery' Carbon letters, 12, 243 (2011). https://doi.org/10.5714/CL.2011.12.4.243
  12. A. Concheso, R. Santamaria, R. Menendez, R. Alcantara, P. Lavela, and J. L. Tirado, 'Influence of the oxidative stabilization treatment time on the electrochemical performance of anthracene oils cokes as electrode materials for lithium batteries', J. Power Sources, 161, 1324 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.148
  13. B. Markovsky, M. D. Levi, and D. Aurbach, 'The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes', Electrochim. Acta, 43, 2287 (1998). https://doi.org/10.1016/S0013-4686(97)10172-4
  14. J. Barker and F. Gao, 'Carbonaceous electrode and compatible electrolyte solvent', U.S. Patent 5712059 (1998).
  15. M. Fujimoto, Y. Shouji, T. Nohma, K. Nishio, and Denki Kagaku 'Charge-Discharge Characteristics of Natural Graphite Electrode in Some Cyclic Carbonates', 65, 949 (1997).
  16. J. K. Park, 'Principles and applications of lithium secondary batteries', Hongnung publishing company, (2010).
  17. Kang Xu, 'Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries', Chem. Rev., 104, 4303 (2004). https://doi.org/10.1021/cr030203g
  18. K. Kanamura, H. Tamura, S. Shiraishi, and Z. Takehara, 'XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4', J. Electrochem. Soc., 142, 340 (1995). https://doi.org/10.1149/1.2044000