DOI QR코드

DOI QR Code

Enhancement of Quick-Charge Performance by Fluoroethylene Carbonate additive from the Mitigation of Electrode Fatigue During Normal C-rate Cycling

  • Tae Hyeon Kim (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Sang Hyeong Kim (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Sung Su Park (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Min Su Kang (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Sung Soo Kim (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Hyun-seung Kim (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Goojin Jeong (Advanced Batteries Research Center, Korea Electronics Technology Institute)
  • Received : 2023.07.31
  • Accepted : 2023.08.11
  • Published : 2023.11.30

Abstract

The quick-charging performance of SiO electrodes is evaluated with a focus on solid electrolyte interphase (SEI)-reinforcing effects. The study reveals that the incorporation of fluoroethylene carbonate (FEC) into the SiO electrode significantly reduced the electrode fatigue, which is from the the viscoelastic properties of the FEC-derived SEI film. The impact of FEC is attributed to its ability to minimize the mechanical failure of the electrode caused by additional electrolyte decomposition. This beneficial outcome arises from volumetric stain-tolerant characteristics of the FEC-derived SEI film, which limited exposure of the bare SiO surface during 0.5 C-rate cycling. Notably, FEC greatly improves Li deposition during quick-charge cycles following aging at 0.5 C-rate cycling due to its ability to maintain a strong electrical connection between active materials and the current collector, even after extended cycling. Given these findings, we assert that mitigating SEI layer deterioration, which compromises the electrode structure, is vital. Hence, enhancing the interfacial attributes of the SiO electrode becomes crucial for maintaining kinetic efficiency of battery system.

Keywords

Acknowledgement

This work was supported by the Ministry of Trade, Industry & Energy/Korea Evaluation Institute of Industrial Technology (MOTIE/KEIT) (Nos. 20011905, 20016056)

References

  1. H. Kim, T. H. Kim, S. S. Park, M. S. Kang, and G. Jeong, ACS Appl. Mater. Interfaces, 2021, 13(37), 44348-44357.  https://doi.org/10.1021/acsami.1c12240
  2. H. Kim, G. Jeong, H. J. Leem, M. A. Lee, J.-N. Lee, S.-G. Woo, and J. Yu, J. Mater. Chem. A, 2022, 10, 17659-17667.  https://doi.org/10.1039/D2TA03666E
  3. H. Kim, T. H. Kim, W. Kim, S. S. Park, and G. Jeong, ACS Appl. Mater. Interfaces, 2023, 15(7), 9212-9220.  https://doi.org/10.1021/acsami.2c19694
  4. Y. M. Kim, H. Kim, B. K. Park, J. H. Yang, H. J. Leem, J. Yu, S. Kim, S. Y. Kim, J.-W. Lee, M.-S. Park, and K. J. Kim, Small, 2023, 19(28), 2301754. 
  5. Y. Zhao, Y. Ding, Y. Li, L. Peng, H. R. Byon, J. B. Goodenough, and G. Yu, Chem. Soc. Rev., 2015, 44, 7968-7996.  https://doi.org/10.1039/C5CS00289C
  6. H. Li, C. Liu, X. Kong, J. Cheng, and J. Zhao, J. Power Sources, 2019, 438, 226971. 
  7. J. Yang, Y. Li, A. Mijailovic, G. Wang, J. Xiong, K. Mathew, W. Lu, B. W. Sheldon, and Q. Wu, J. Mater. Chem. A, 2022, 10, 12114-12124.  https://doi.org/10.1039/D2TA01707E
  8. B. S. Vishnugopi, A. Verma, and P. P. Mukherjee, J. Electrochem. Soc., 2020, 167, 090508. 
  9. A. Tomaszewska, Z. Chu, X. Feng, S. O'Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, and B. Wu, eTransportation, 2019, 1, 100011. 
  10. T. R. Tanim, E. J. Dufek, M. Evans, C. Dickerson, A. N. Jansen, B. J. Polzin, A. R. Dunlop, S. E. Trask, R. Jackman, I. Bloom, Z. Yang, and E. Lee, J. Electrochem. Soc., 2019, 166, A1926. 
  11. A. Sarkar, P. Shrotriya, and I. C. Nlebedim, ACS Appl. Energy Mater., 2022, 5(3), 3179-3188.  https://doi.org/10.1021/acsaem.1c03803
  12. H. Kim, J. Kim, S. T. Yoo, J. H. Ryu, and S. M. Oh, J. Electrochem. Soc., 2021, 168, 040523. 
  13. Y. T. Jeong, H. R. Shin, J. Lee, M.-H. Ryu, S. Choi, H. Kim, K.-N. Jung, and J.-W. Lee, Electrochim. Acta, 2023, 462, 142761. 
  14. T. H. Kim, S. S. Park, M. S. Kang, Y. R. Kim, H. S. Park, H. Kim, and G. Jeong, J. Electrochem. Soc., 2022, 169, 020562. 
  15. K.-H. Chen, M. J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi, S. M. Mortuza, E. Kazyak, J. Mazumder, K. Thornton, J. Sakamoto, and N. P. Dasgupta, J. Power Sources, 2020, 471, 228475. 
  16. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, J. Phys. Chem. C, 2011, 115(27), 13487-13495.  https://doi.org/10.1021/jp201691g
  17. W. Kim, T. H. Kim, J. Yu, Y.-J. Kim, K. J. Kim, and H. Kim, Adv. Funct. Mater., 2023, 2306068. 
  18. J. Xiao, W. Xu, D. Wang, D. Choi, W. Wang, X. Li, G. L. Graff, J. Liu, and J.-G. Zhang, J. Electrochem. Soc., 2010, 157, A1047. 
  19. L. Chen, K. Wang, X. Xie, and J. Xie, Electrochem. Solid-State Lett., 2006, 9, A512. 
  20. K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, Y. S. Meng, and K. J. Stevenson, Chem. Mater., 2015, 27(16), 5531-5542.  https://doi.org/10.1021/acs.chemmater.5b01627
  21. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett., 2004, 7, A93. 
  22. M. N. Obrovac and L. J. Krause, J. Electrochem. Soc., 2007, 154, A103. 
  23. M. N. Obrovac and V. L. Chevrier, Chem. Rev., 2014, 114(23), 11444-11502.  https://doi.org/10.1021/cr500207g
  24. J. G. Lee, J. Kim, J. B. Lee, H. Park, H.-S. Kim, J. H. Ryu, D. S. Jung, E. K. Kim, and S. M. Oh, J. Electrochem. Soc., 2017, 164, A6103. 
  25. K. Kanamura, H. Tamura, and Z. Takehara, J. Electroanal. Chem., 1992, 333(1-2), 127-142.  https://doi.org/10.1016/0022-0728(92)80386-I
  26. A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, and B. L. Lucht, Chem. Mater., 2016, 28(22), 8149-8159.  https://doi.org/10.1021/acs.chemmater.6b02282
  27. V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Langmuir, 2012, 28(1), 965-976.  https://doi.org/10.1021/la203712s
  28. S. S. Zhang, J. Power Sources, 2006, 162(2), 1379-1394.  https://doi.org/10.1016/j.jpowsour.2006.07.074
  29. N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, and S.-S. Kim, J. Power Sources, 2006, 161(2), 1254-1259.  https://doi.org/10.1016/j.jpowsour.2006.05.049
  30. J. Agrisuelas, C. Gabrielli, J. J. Garcia-Jareno, H. Perrot, O. Sel, and F. Vicente, Electrochim. Acta, 2015, 176, 1454-1463. https://doi.org/10.1016/j.electacta.2015.07.131