• Title/Summary/Keyword: SBT thin film

Search Result 67, Processing Time 0.021 seconds

Electrical properties of S$SrBi_{2x}Ta_2O_9$ thin films with Bi content (Bi 함량에 따른 $SrBi_{2x}Ta_2O_9$ 박막의 전기적 특성)

  • 연대중;권용욱;박주동;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.224-230
    • /
    • 1999
  • $SrBi_{2x}Ta_2O_9$ (SBT) thin films were prepared on platinized silicon substrates by MOD process, and their ferroelectric and leakage current characteristics were investigated. The grain size of the MOD derived SBT films increased with increasing the BI/Ta mole ration. Although the SBT films with x of 0.8~1.2 were composed of the equiaxed grains, the elongated grains were also observed for the SBT films with x of 1.4 and 1.6. The SBT film with x of 1.2 exhibited the optimum ferroelectric properties of 2PR : 9.79 $\muC/\textrm{cm}^2$ and Ec : 24.2kV/cm at applied voltage of 5V. The leakage current density of the SBT films increased with increasing the BI/Ta mole ratio. With post annealing process, 2Pr and $E_c$of the SBT film with x of 1.2 increases 11.3 $\muC/\textrm{cm}^2$ and 39.6kV/cm, respectively. decrement of the leakage current density by post annealing process increased remarkably with increasing the Bi/ta mole ratio, and the SBT film with x=1.6 exhibited the lowest leakage current density after post annealing process.

  • PDF

Dielectric and Electrical Properties of $Sr_{0.9}Bi_{2+x}Ta_2O_9$ Thin Films on $IrO_2$ Electrode ($IrO_2$를 하부전극으로 사용한 $Sr_{0.9}Bi_{2+x}Ta_2O_9$ 박막의 유전 및 전기적 특성)

  • 박보민;송석표;정병직;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.233-239
    • /
    • 2000
  • Sr0.9Bi2+xTa2O9(x=0, 0.1, 0.2, 0.3) thin films on IrO2/SiO2/Si or Pt/Ti/SiO2/Si substrate were prepared by spin coating method using SBT stock solutions synthesized by MOD process. SBT thin films on IrO2 transformed to layered perovskite phase at $700^{\circ}C$, but showed low breakdown voltage due to their porous microstructure. The smaple of Sr0.9Bi2+xTa2O9 composition showed the best dielectric and electrical properties. When the sample of the same composition was annealed at 80$0^{\circ}C$, the dielectric and electric properties were improved due to the grian growth and dense surface. the remanent polarization values(2Pr) at $\pm$3 V for IrO2 and Pt electrodes were 10.5, 7.15$\mu$C/$\textrm{cm}^2$, respectively. The SBT thin film with IrO2 electrode showed the lower coercive field. The leakage current density and breakdown voltage of SBT thin films on IrO2 were higher than those on Pt.

  • PDF

Annealing Temperature Properties of SBT Thin Film for Semiconductor Device (반도체 소자용 SBT 박막의 후속 열처리 특성)

  • Oh, Yong-Cheul;Kim, Ki-Joon;Jeon, Dong-Keun;Hong, Sun-Pyo;Kim, Sang-Jin;Song, Ja-Yoon;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.697-700
    • /
    • 2004
  • The SBT$(Sr_{0.8}Bi_{2.4}Ta_2O_9)$ thin films for semiconductor device were deposited on Pt-coated $Pt/TiO_2/SiO_2Si$ wafer by RF magnetron sputtering method at $400[^{\circ}C]$ and annealed at the temperature range from $600[^{\circ}C]$ to $850[^{\circ}C]$. The top electrodes(Pt) were deposited on SBT thin film by DC sputtering method. The crystallinity of SBT thin films were increased with increase of annealing temperature in the temperature range of $600[{\circ}C]\sim850[^{\circ}C]$. The annealing temperature properties were to be most excellent in the case of annealed SBT thin film at $750^{\circ}C]$. And, the maximum remanent polarization$(2P_r)$ and the coercive electric field$(E_c)$ at annealing temperature of $750[^{\circ}C]$ obtained about $11.60[{\mu}C/cm^2]$ and 48[kV/cm], respectively. Specially, it was seen that fatigue properties does not change in $10^{10}$ switching cycle.

  • PDF

Effects of W-N/Pt Bottom Electrode on the Ferroelectric Degradation of $Sr_{0.8}Bi_{2.4}Ta_2O_9/Pt/Si$ Structure due to the Hydrogen Annealing ($Sr_{0.8}Bi_{2.4}Ta_2O_9/Pt/Si$ 구조의 수소열처리에 의한 강유전특성 열화에 미치는 W-N/Pt 전극효과)

  • Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.87-91
    • /
    • 2004
  • We have investigated the effects of W-N/Pt bottom electrode on the ferroelectric degradation of $Sr_{0.8}Bi_{2.4}Ta_2O_9(SBT)/Pt$ due to hydrogen annealing at $350^{\circ}C$ in $N_2$ gas atmosphere containing $5{\%}\;H_2$ gas for 1hr. As a result, inserting the W-N thin films between SBT and Pt, this W-N thin film prevents hydrogen molecules to be chemisorbed at the Pt electrode surface of at the electrode/ferroelectric interface during hydrogen annealing. These hydrogen atoms can diffuse into the SBT and react with the oxide causing the oxygen deficiency in the SBT film, which will result in the ferroelectric degradation. Experimental results show that W-N thin film is a good diffusion barrier during the hydrogen annealing.

  • PDF

The Study on the surface of SBT Thin Film after Etching in Ar/$CI_2$ Plasma (Ar/$CI_2$ 식각 후 SBT 박막의 표면에 관한 연구)

  • 김동표;김창일;이원재;유병곤;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.363-366
    • /
    • 2000
  • In this study, SrBi$_2$Ta$_2$$O_{9}$ (SBT) thin films were etched at different Cl$_2$gas mixing ratio in Cl$_2$/Ar. The maximum etch rate of SBT was 883 $\AA$/min in Cl$_2$(20%)/Ar(80%). The result indicates that physical sputtering of charged particles is dominant to chemical reaction in etching SBT thin films. To evaluate the changes of morphology and crystallinity on the near surface of etched SBT, atomic force microscopy (AFM) and x-ray diffraction (XRD) were used. The rms values of etched samples in Ar only or Cl$_2$ only plasma were higher than that of as-deposited, Cl$_2$/Ar Plasma. The SBT (105) crystalinity of the etched samples decreased in Af only or Cla only plasma, but maintain constant in ClyAr plasma. This can be illustrated by a decrease of Bi content or nonvolatile etching products (Sr-Cl and Ta-Cl), resulting in the changes of stoichiometry on the etched surface of the SBT thin films. The decrease of Bi content and nonvolatile etch products were revealed by x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS).).

  • PDF

The Effect of the Heat Treatment of the ZrO2 Buffer Layer and SBT Thin Film on Interfacial Conditions and Ferroelectric Properties of the SrBi2Ta2O9/ZrO2/Si Structure (ZrO2 완충층과 SBT 박막의 열처리 과정이 SrBi2Ta2O9/ZrO2/Si 구조의 계면 상태 및 강유전 특성에 미치는 영향)

  • Oh, Young-Hun;Park, Chul-Ho;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.624-630
    • /
    • 2005
  • To investigate the possibility of the $ZrO_2$ buffer layer as the insulator for the Metal-Ferroelectric-Insulator-semiconductor (MFIS) structure, $ZrO_2$ and $SrBi_2Ta_2O_9$ (SBT) thin films were deposited on the P-type Si(111) wafer by the R.F. magnetron-sputtering method. According to the process with and without the post-annealing of the $ZrO_2$ buffer layer and SBT thin film, the diffusion amount of Sr, Bi, Ta elements show slight difference through the Glow Discharge Spectrometer (GDS) analysis. From X-ray Photoelectron Spectroscopy (XPS) results, we could confirm that the post-annealing process affects the chemical binding condition of the interface between the $ZrO_2$ thin film and the Si substrate. Compared to the MFIS structure without the post-annealing of the $ZrO_2$ buffer layer, memory window value of MFlS structure with post-annealing of the $ZrO_2$ buffer layer were considerably improved. The window memory of the Pt/SBT (260 nm, $800^{\circ}C)/ZrO_2$ (20 nm) structure increases from 0.75 to 2.2 V under the applied voltage of 9 V after post-annealing.

Capacitor characteristics of SBT Ferroelectric Thin Films depending on substrate conditions (기판 조건에 따른 SBT 강유전체 커패시터의 특성)

  • 박상준;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.143-150
    • /
    • 2000
  • Ferroelectric SrxBi2+yTa2O9+$\alpha$ thin films with various compositions(x=0.7, 0.8, 1, y=0.3, 0.4) were prepared by sol-gel method. The film with moled ratio of 0.8:2.3:2.0 in Sr/Bi/Ta, which was deposited on Pt/SiO2/Si (100), showed better ferroelectric properties than other films. To investigate substrate effects, the same compositions were spin coated on Pt/Ti/SiO2/Si (100) substrates. At an applied voltage of 5V, the dielectric constant($\varepsilon$r), remanent polarization (2Pr) and coercive field (Ec) of the Sr0.8Bi2.3Ta2O9+$\alpha$ thin film prepared on Pt/Ti/SiO2/Si (100) were about 296, 24$\mu$C/$\textrm{cm}^2$ and Ec of 49kV/cm respectively. Both SBT films firred at 80$0^{\circ}C$ revealed no fatigue up to 1010 cycles. Retention characteristics of these capacitors showed no degradation up to 104 sec.

  • PDF

Study on Low Temperature Formation of Ferroelectric $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ Thin Films by Sol-Gel Process and Rapid Thermal Annealing (솔-젤법 및 급속열처리에 의한 $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ 박막의 저온형성에 관한 연구)

  • 장현호;송석표;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.312-317
    • /
    • 2000
  • Ferroelectric S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ solutions were synthesized using sol-gel process in which strontinum ethoxide bismuth ethoxide trantalum ethoxide were used a s startring materials. SBT thin films were coated on Pt/Ti/ $SiO_2$/Si substrates by spin-coating. rapid thermal annealing (RTA) was used to promote crystallization. Thin films were annealed at $700^{\circ}C$ for 1 hr in an oxygen atmosphere. This temperature is about 10$0^{\circ}C$ lower than the usual annealing temperature for SBT thin films. Pt top-electrode was deposited by sputtering and thin films were post-annealed at $700^{\circ}C$ for 30 min. to enhance electrical properties. As the RTA temperature increased the higher 2 $P_{r}$ values were obtained. At RTA temperature being 78$0^{\circ}C$ remanent polarization of S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ thin film was 7.73 $\mu$C/cm $_2$ and the leakage current density was 1.14$\times$10$^{-7}$ A/c $m^2$ at 3 V. As RTA temperature increased the breakdown voltage was decreased. It is considered that the low-field breadown is caused by the rough surface of SBT films and forming bismuth metal in SBT thin films.films.lms.

  • PDF

Ferroelectric Properties of SBT Capacitor with Annealing Times

  • Cho, Choon-Nam;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.66-70
    • /
    • 2004
  • The Sr$\_$0.7/Bi$\_$2.3/Ta$_2$O$\_$9/(SBT)thin films are deposited on Pt-coated electrode (Pt/TiO$_2$/SiO$_2$/Si) using a RE magnetron sputtering method. The ferroelectric properties of SBT capacitors with annealing times were studied. As a result of conducting the X-ray diffraction analysis and the electron microscopy analysis, the perovskite phase began to grow from 10 minutes after annealing the specimen, and excellent crystallization was accomplished at 60 minutes after annealing the specimen. The remanet polarization (2P$\_$r/) value and the coercive electric field (E$\_$c/) of the SBT thin film specimen showed the most excellent characteristics at 60 minutes after annealing the specimen, which were approximately 12.40 C/$\textrm{cm}^2$ and 30 kV/cm, respectively. The leakage current density of the SBT thin film specimen as annealed for 60 minutes was approximately 2.81${\times}$10$\^$-9/A/$\textrm{cm}^2$.

Preparation of ZrO2 and SBT Thin Films for MFIS Structure and Electrical Properties (ZrO2 완충층과 SBT박막을 이용한 MFIS 구조의 제조 및 전기적 특성)

  • Kim, Min-Cheol;Jung, Woo-Suk;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.377-385
    • /
    • 2002
  • The possibility of $ZrO_2$ thin film as insulator for Metal-Ferroelectric-Insulator-Semiconductor(MFIS) structure was investgated. $SrBi_2Ta_2O_9$ and $SrBi_2Ta_2O_9$(SBT) thin films were deposited on P-type Si(111) wafer by R. F. magnetron sputtering method. The electrical properties of MFIS gate were relatively improved by inserting the $ZrO_2$ buffer layer. The window memory increased from 0.5 to 2.2V in the applied gate voltage range of 3-9V when the thickness of SBT film increased from 160 to 220nm with 20nm thick $ZrO_2$. The maximum value of window memory is 2.2V in Pt/SBT(160nm)/$ZrO_2$(20nm)/Si structure with the optimum thickness of $ZrO_2$. These memory windows are sufficient for practical application of NDRO-FRAM operating at low voltage.