• Title/Summary/Keyword: S-exact

Search Result 2,763, Processing Time 0.024 seconds

An Exact Algorithm for the Aircraft Scheduling Problem (비행기 일정계획 문제를 위한 최적해법)

  • 기재석
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.25
    • /
    • pp.91-95
    • /
    • 1992
  • The aircraft schedule is the central of an airline's planning process, aimed at optimizing the deployment of airline's resources in order to maximize profits In this paper, the aircraft schedule is formulated as an integer programming model and the exact algorithm hared on enumeration method is proposed.

  • PDF

Combining Independent Permutation p Values Associated with Mann-Whitney Test Data

  • Um, Yonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.99-104
    • /
    • 2018
  • In this paper, we compare Fisher's continuous method with an exact discrete analog of Fisher's continuous method from permutation tests for combining p values. The discrete analog of Fisher's continuous method is known to be adequate for combining independent p values from discrete probability distributions. Also permutation tests are widely used as alternatives to conventional parametric tests since these tests are distribution-free, and yield discrete probability distributions and exact p values. In this paper, we obtain permutation p values from discrete probability distributions using Mann-Whitney test data sets (real data and hypothetical data) and combine p values by the exact discrete analog of Fisher's continuous method.

Calculation of Stress Intensity Factor KI Using the Exact Solution in an Infinitely Deep Crack in a Half-Plane (반 무한 평판에 존재하는 반 무한 균열에서 엄밀 해를 이용한 응력확대계수 계산)

  • An, Deuk Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • In this study, we develop the exact field of mode I in an infinitely deep crack in a half-plane. Using this field, we obtain the exact stress intensity factor $K_{I}$. From the tractions on the crack faces induced by exact field, we calculate the stress intensity factor of this field. We compare the results with the stress intensity factor calculated using Bueckner's weight function formula and that calculated by using Tada's formula listed in "The Stress Analysis of Cracks Handbook" It was found that Bueckner's formula yields accurate results. However, the results obtained using Tada's formula exhibit inaccurate behavior.

Permutation P-values for Inter-rater Agreement Measures

  • Um, Yonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.169-174
    • /
    • 2015
  • Permutation p-values are provided for the agreement measures for multivariate interval data among many raters. Three agreement measures, Berry and Mielke's measure, Janson and Olsson's measure, and Um's measure are described and compared. Exact and resampling permutation methods are utilized to compute p-values and empirical quantile limits for three measures. Comparisons of p-values demonstrate that resampling permutation methods provide close approximations to exact p-values, and Berry and Mielke's measure and Um's measure show similar performance in terms of measuring agreement.

Average Walk Length in One-Dimensional Lattice Systems

  • Lee Eok Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.665-669
    • /
    • 1992
  • We consider the problem of a random walker on a one-dimensional lattice (N sites) confronting a centrally-located deep trap (trapping probability, T=1) and N-1 adjacent sites at each of which there is a nonzero probability s(0 < s < 1) of the walker being trapped. Exact analytic expressions for < n > and the average number of steps required for trapping for arbitrary s are obtained for two types of finite boundary conditions (confining and reflecting) and for the infinite periodic chain. For the latter case of boundary condition, Montroll's exact result is recovered when s is set to zero.

Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam

  • Heydari, Abbas
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.589-606
    • /
    • 2018
  • The previous studies reflected the significant effect of neutral-axis position and coupling of in-plane and out-of-plane displacements on behavior of functionally graded (FG) nanobeams. In thin FG beam, this coupling can be eliminated by a proper choice of the reference axis. In shear deformable FG nanobeam, not only this coupling can't be eliminated but also the position of neutral-axis is dependent on through-thickness distribution of shear strain. For the first time, in this paper it is avoided to guess a shear strain shape function and the exact shape function and consequently the exact position of neutral axis for arbitrary gradation of higher order nanobeam are obtained. This paper presents new methodology based on differential transform and collocation methods to solve coupled partial differential equations of motion without any simplifications. Using exact position of neutral axis and higher order beam kinematics as well as satisfying equilibrium equations and traction-free conditions without shear correction factor requirement yields to better results in comparison to the previously published results in literature. The classical rule of mixture and Mori-Tanaka homogenization scheme are considered. The Eringen's nonlocal continuum theory is applied to capture the small scale effects. For the first time, the dependency of exact position of neutral axis on length to thickness ratio is investigated. The effects of small scale, length to thickness ratio, Poisson's ratio, inhomogeneity of materials and various end conditions on vibration and buckling of local and nonlocal FG beams are investigated. Moreover, the effect of axial load on natural frequencies of the first modes is examined. After degeneration of the governing equations, the exact new formulas for homogeneous nanobeams are computed.

Analysis on Exact Rigidity and Free Vibration of Trapezoidal Corrugated Plates (사다리꼴형 주름판의 엄밀강성 및 자유진동 해석)

  • Kim, Young-Wann;Jung, Kang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.787-794
    • /
    • 2016
  • In this study, the exact rigidity and the free vibration of trapezoidal corrugated plate are analyzed by being based on the Kirchhoff's plate theory and the Ritz method. The previous rigidity of corrugated plate analyzed by considering just a geometric characteristic, a basic assumption and an equivalent idea can cause large errors in practical behaviors. Accordingly, the exact rigidity supplemented by correction factors of the theoretical rigidity is needed. Therefore an analysis on the exact rigidity and the free vibration using the rigidity for the plate is performed in this paper.

Design of unknown-input PI observer and exact LTR

  • Kim, Hwan-Seong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.95-98
    • /
    • 1995
  • In this paper, an unknown-input proportional integral (PI) observer is presented and its applicability to the design of exact loop transfer recovery (Exact LTR) is shown. First, a sufficient condition for the PI observer to estimate the states of systems without knowledge of unknown input is derived. A simple existence condition of the observer is given. Under the conditions, the Exact LTR with specified observer's poles is achieved by the unknown-input PI observer.

  • PDF

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

THE MEASURE OF THE UNIFORMLY HYPERBOLIC INVARIANT SET OF EXACT SEPARATRIX MAP

  • Kim, Gwang-Il;Chi, Dong-Pyo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.779-788
    • /
    • 1997
  • In this work, using the exact separatrix map which provides an efficient way to describe dynamics near the separatrix, we study the stochastic layer near the separatrix of a one-degree-of-freedom Hamilitonian system with time periodic perturbation. Applying the twist map theory to the exact separatrix map, T. Ahn, G. I. Kim and S. Kim proved the existence of the uniformly hyperbolic invariant set(UHIS) near separatrix. Using the theorems of Bowen and Franks, we prove this UHIS has measure zero.

  • PDF