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Rgure 5. X-ray diffraction patterns of the 1-2-4 samples after 
sintering under the hi응h oxygen pressure.

Cuq superconductor by the EDTA complex pyrolysis me
thod under 1 atm oxygen pressure. This method can over
come kinetic problems, since homogeneous fine powder is 
obtained. The starting material with 1-2-4 nominal compo
sition was converted to the 1-2-3+CuO phase during den- 
sification, followed by the recovery of the 1-2-4 phase and 
the resultant samples were studied by the XRD, TG, DTA 
and AC magnetic susceptibility measurements. In conclusion, 
we have developed a new 1-2-4 synthesis requiring no 
special technique such as particularly high temperature and 
1-2-4 phase is predominant as the P(O2) is increased.
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We consider the problem of a random walker on a one-dimensional lattice (N sites) confronting a centrally-located 
deep trap (trapping probability, T=l) and TV—1 adjacent sites at each of which there is a nonzero probability s 
(0<s<l) of the walker being trapped. Exact analytic expressions for <n> and the average number of steps required 
for trapping for arbitrary s are obtained for two types of finite boundary conditions (confining and reflecting) and 
for the infinite periodic chain. For the latter case of boundary condition, Montroll's exact result is recovered when 
s is set to zero.

Introduction

The theories of random walks on a space lattice have been 

*This work is supported by Korea Advanced Institute of Science 
and Technology and partially by Center for Thermal and Statisti
cal physics.

dealt for a couple of decades since the turn of the century1~4. 
There are numerous examples which can be explained by 
a random walk on a space lattice. To name some of them, 
diffusion of electrons, excitons, energy transfer3,5,6, etc.

In this paper for a particular class of one-dimensional lat
tice problem, we have shown an analytic expression for the 
average walk length on a chain with a centrally-disposed 
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deep trap (trapping probability, 7=1) flanked by NT sites 
at which the probability of being trapped is uniformly non
zero (0<s<l), for two types of finite boundary conditions 
(confining (or transmitting) and reflecting) and for infinite 
periodic chain.

We develop in the following section recursion relations 
from which analytic expressions for <n> are constructed 
for T-l, arbitrary s and for both finite and inHnite boundary 
conditions.

In section III we consider the special case, T=1 with all 
s=0, for the particular case of pericdic boundary condition.

N(N+1)We show how the classic result (<n>=---- ------, N=2N6
+ 1)—3 of Montroll may be recovered from our theory and 
then present a companion result for the same trapping pro
blem but for the case of reflecting boundary conditions. As 
it happens, the details of the general proof presented in sec
tion II do not depend on the assumption that the trapping 
probability s of the N— 1 sites adjacent to the central deep 
trap be constant. Rather, 5 can be chosen to depend parame
trically on some auxiliary variable of the problem. For exam
ple, in problems dealing with the catalytic effectiveness of 
linear supports or in the prc»blem of exciton migration, the 
time is a relevant variable of the process being considered5-6.

Accordingly we explore in section IV the consequences 
of assuming two different functional forms describing the 
dependence of the trapping probability s on the temporal 
state of the system. In particular, a linear and an exponential 
dependence of s on the (reduced) time T is postulated and 
profiles of <n> versus T f다r each case are presented.

theory for Arbitrary s.

・ Periodic and Confining Boundary Conditions. Let 
us construct a generating function 0(£) for the trapping pro
bability distribution associated with lattice site i It is

质)=力”％”)，
>1=0

where Pi(n) is the probability nhat an rendom walker starting 
from site i becomes trapped at a centrosymmetric trap after 
n切 step.

By standard manipulations, we get

%(t) -1Z项 0T')以t)= 0(0) (1)

where is the transition probability from site i to site 
If /is independent of m, i.e., we are dealing 

with a Markovian process, then the above expression (1) 
can be expressed as a vector equation in which the /th ele
ment represents the generating function of site i.

If we write (1) in matrix form,

U(t)~tPU(t)=U(0) (2)

where £7(0) is the initial condition of the problem and P 
is the transition probability matrix.

From now on, we denote matrix as P(N) and determinant 
as PN.

Inverting Eq. (3), we have

叫=a-tp)T=u(o) (3)

Sinece 사le matrix (1-ZP) can be specified at the outset, 
it is seen that the quantity U(f) can be evaluated via a simple 
inversion of 사le matrix (1-/P). Once this is achieved, the 
average walk length vector <n> can be derived from

园=警1,=广으［d倾이 L ⑷

(5)

Consider now the particular case of a random walk on a 
one-dimensional lattice. We assume that there exists a cen
trosymmetric deep trap (T) flanked by N sites at each of 
which there exists a finite probability s of being trapped. 
We impose periodic boundary conditions on the resultant 
2N누\=N site, odd lattice. If hopping to nearest neighbor 
sites only is permitted then an (2V +1) X (7V+1) transforma
tion matrix can be identified as

ri 0 o … - ~<n>T~
a 1 a 0… <M>1
0 a 1 a… 

............... a

<n>2

Lo 0 0 0 ••■1 + aJ -<n>N-
~ 0 *
一어 WD+Wl)} 
一어 WD + WD}

二： •••

一이必r—l⑴+0V+1(1)}
어 女 1)+贝顼1)} _

, 1二 Swhere, a—— 一-—,

1
It can be easily seen that if s = 0, U(l)三:,

_1_

(6)

1
0

0
from Eq. (3) and initial condition (7(0) =
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Therefore the problem of determining <n> is reduced 
to the problem of inverting the matrix Q(N+D・

To compute the inverse of Q(N +1) we must determine 
the adjoint matrix and obtain an expression for det Q(N +1). 
Speaking to the latter problem first, let us define the anxi- 
liary quantity7,

Qi=l + a

Q2=l+a-c『.

Either Eq. (6) or (7) can be used for calculation of the aver
age walk length <n> from site j.

From Eq. (7)

Rv=det

1 a 0 0 0 0
a 1 a 0 0 0
0 a 1 a 0 ••• 0
 0 
0 0 0 1.... a
0 0 0 a 1 _

<n>j~ Aij{-afxQN -i+l (12)

(8)

Using this, the determinant of the matrix Q(N+1) may be 
written,

det Q(N +1)-(1 + i一a27?N-2=Qn (9)

The Rn can be expressed as a recurrence relation of follow
ing the form.

Rn=Rn \ — g8Rn-2 with initial values : 2?i = 1 and -c*.
We define generating function Z,

2=1+&*+&渺繇护+…

where the index j ranges from 2 to N+X. Using this expres
sion in conjunction with the earlier results, Eqs. (8), (10) 
and (11) allows the calculation of the average walk length 
from an arbitrary site j of the one-dimensional lattice.

In order to express more clearly the analytic structure 
of the result, we enter Eqs. (8), (10) and (11) into the Eq. 
(12), with the result:

<«>)-!

where,

*+(-1沪0一幵1 * R一2Q1+1

+ (—a)r T&q 攜」(一 ayQv-,+1}2] (13)

which, taking account of the initial values R\ and R2, gives 
the closed form expression :

Qn-j+i =
I 1+sinO

2 sinG H ~2一
品브空

2 }

Z= l-X+ctX (9)
-( 项票 叩-、再 sin쯩空)} (14)1

It is convenient to specify the range of values of the para
meter a by an angular variable 0 as a= ^-cos0( y ^0<n). 

Then one obtains the result

&=(&)["=一으*T ㈣
by equating corresponding terms in the two expressions for 
Z. This procedure for determining Rn does not work for 
the special case s = 0, however, one can show, either via ap
plication of L' Hospital's rule or via direct Taylor expan

sion, that Rn=，썼?) for s=0.

Nest, we determine the adjoint matrix corresponding to 
Q(N+1).

The cofactor of each element of the maxtric Q(N +1) may 
be worked out with the results :

= (Ha)

&i = 0 for j = 2 thru (11b)

出二(一1)1勺矿iQv 八 1 血 j=2 thru j=N+l (11c)

& = (-l)'+頌기GuQm for iZj and
i — 2 thru i=N+l, (lid)

and finally,

for i<j and j = 2 thru j=N+l,
(He)

with
Qo= 1 

The use of Eqs. (10), (13) and (14) allows the explicit calcula
tion of <n> for arbitrary s, and from these one can deter
mine the overall walk length <n> :

6>= 해专严 混 <”>， (15)

where the symmetry number g for the one-dimensional lat
tice here is 2 for all sites i.

In concluding this subsection, we comment on the relation
ship between the results obtained for periodic boundary con
ditions versus those obtained for the case of confining boun
dary conditions. By the latter class of boundary conditions 
is meant that if the walker attempts to step off the end 
(or Mh) site of the one-dimensional lattice, he must return 
to the lattice site from which he started the Nth site). 
It turns out that the mathematical structure of the transfor
mation matrix for the latter problem is exactly the same 
as that for the infinite periodic chain.

Therefore, the analytic results reported above (piz.t Eqs. 
(13), (14) and (15)) apply as well to a finite, one-dimensional 
chain with a centrosymmetic deep trap.

Reflecting Boundary Conditions. The case of reflec
ting boundary conditions is implemented by the restriction 
that if the walker attempts to step off the end (or Nth) site 
of the lattice, he is displaced to one (interior) lattice point 
further from thee boundary than the lattice site from where 
he started.

In this case, if hopping to nearest neighbors only is per
mitted, then an (NXI)X(ATXI) transformation matrix desc
riptive of the process can be written down and Eq. (4) assu
mes the form :



where here, a=------ - ---

If we define the transformation matrix on the left-hand 
side as Q(N+1), then with the auxiliary quantity RNt we 
find that Qn=4做 Q(N)=Rn-i -2q8Rn-2, with in this case, 
Qo=l, Q=1 -2a%…

Following a procedure exactly similar to that laid down 
in the preceding section, we invert the matrix Eq. (16) and 
find,

<n>i =赤 (17)

where, in this case,

Qe = (丄号广'*( 上成쁴 E

This result may be used in conjunction with Eq. (15) to 
determine the overall walk length <n> for a one-dimensional 
lattice with a centrosymmetric deep trap and reflecting 
boundary conditions. Representative calculations of <n> for 
arbitrary s for the three boundary conditions studied in this 
paper will be presented in section IV.

The Spe겨戒 Case. s = 0

The choice s=0 together with periodic boundary condi
tions corresponds to the problem considered a generation 
ago by Montroll and Weiss for which it was proved that,

/、 N(N+D g• <n> -—스切-- , (18)o

where N is the total number of lattice sites on the chain.
The result (18) can be recovered either from the expres

sions obtained from matrix Eq. (7), or from matrix Eq. (6).
To generate <n> starting from Eq. (6), we need two preli

minary results.

First, from the expression (10) we have (f=l): 

!• n _Iimf 1 r(i+siney+1 (i-siner+1-|i JV+1

Next, we have = 2%=i det R'KN) evaluated at <=1 ot
and s=0, where RgN) is the NXN matrix :

1 a 0 0 ...........
a 1 a 0 ...........

孩N)= ............................................... (20)
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6a 八 da 
허 혀 

....................... ala 

.......................................a 1 _

where, a= — y/

Then we obtain the following recursion relation for R(N): 

砌VET” 쯔 L" 쯔 L

aRi-】RNTT (21)

From Eqs. (20) and (21),

警 L 쯔)Li ｛第,*,+5—아匚

(22)

From above, we have immediately :

2儿=1=[(1 + 以?宀13為-』f=i= 느,

and

with these results, the average walk lenght from site i to 
the centrosymmetric trap may be calculated by differentiating 
the generating function directly.

<”>宀=쯰니=[=寺(응，)l
=-f+j(2N+3)-2(N+1) (23)

A similar calculation starting from Eq. (4) also gives the 
<w>,

<”>1=島「話蓦"

Using the previous results (for QN and R。) we have

Vz>j_i= 一产成(2N+3) — 2(N+l). (24)

Therefore, Eqs. (23) and (24) give the overall average walk 
length to be,

(2N+2)(2N+1) _ MN+1)
6 — ―6一

(Notice that in our notation Montrolfs N corresponds to 
2N+1).

For the case of reflecting boundary conditions,

<n>j^= 一尸+2，(N+1)-(2V+1)

Consequently, the overall walk length <n> is

(N+1) (4ZV— 1) = (N+l) (2N— 3) 
6 — 12

Discussion

The special case s~s(t). Numerical results.
Assigning s to be nonzero value bounded between zero 

and unity means that the background sites are no longer

느，W <«>/-! =

<”> 느
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Rgure 1. Evaluation profiles fot the overall expected walk 
length <n> versus reduced time T assuming that s = 1 — T. Each 
pair of curves relates to a lattice with N sites characterized by 
a trapping probability s on either side of a central, deep trap 
(T=l) and subject to periodic (solid line) or reflecting (dotted 
line) boundary conditions.

nonabsorbing but rather can, with probability s, trap the 
walker.

In the spirit of reaction-diffusion theory, if we regard the 
random walker as a molecule (atom, exciton) diffusing toward 
a target molecule (at the deep trap), then setting s=Q mean옹 
that the N— 1 sites flanking the target m이ecule can be re
graded as reaction centers which with nonvanishing probabi
lity s, may react with the diffusing species, thereby removing 
the coreactant irreversibly from the system.

In fact, we may imagine following physical situations, 
where the probability s is time dependent. For example, con
sider a situation where all the sites are characterized initially 
by s = L Then with the passage of time we may imagine 
that the N— 1 auxialiary sites except the central trap become 
systematically and uniformly depressed. In this situation, one 
would anticipates s as a function of time. Then in this situa
tion, we may proceed by imposing a functional dependence 
on s in terms of a dimensionless time variable (T=t/tc, 
where tc is some characteristic lifetime). Two sorts of func
tional dependences are considered :

s(T) = l—T (25)

(
스
Jv) 

q
&

u

4*
-3-

D

 구

Figure 2. Evaluation profiles for the overall expected walk 
length <n> versus reduced time T assuming that x=e^T. The 
conventions here are the same as in Figure 1.

s(T)=e - T (26)

The results for the first case for periodic and reflecting 
boundary conditions for a series of one-dimensional lattices : 
N=7t 11, 15, 19, are shown in Figure (1).

It is seen that a linear response to the external environ
ment leads to an initial, slowly varing change in the effeci- 
enccy of reaction of the system, with a dramatic rise to the 
limiting value <w>s=0 realized only when the N—l backg
round sites have been essentially neutralized. The exponen
tial decay in the reaction effeciency of the TV—1 auxiliary 
오ites specified by the Eq. (25) leads to short-time behavior 
similar to that given by Eq. (26).
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