• Title/Summary/Keyword: S-형상 노즐

Search Result 86, Processing Time 0.026 seconds

An Experimental Investigation of Combustion Characteristics in a Model Combustor by Reproduction of GE 7FA+e DLN-2.6 Gas Turbine (GE 7FA+e DLN-2.6 연소기를 모사한 모형 가스터빈 연소기의 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Lee, Jang-Su;Park, Seong-Soon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.231-235
    • /
    • 2009
  • The mainly objectives of this study was a combustion dynamics and instability characteristics in a model dump type combustor which is scale down of GE 7FA+e DLN 2.6 gas turbine combustor with running at Seo-Inchon combined cycle power plant. Model gas turbine injector has 2-stage swirl vane and it's reduced 1/3 size of the original one. The shape of plenum and combustor were designed for similar acoustic characteristics. As the result, this research have been shows the peak frequency of model combustor was changed quarter-wave mode to Helmholtz resonator mode in plenum and longitudinal mode in dump combustor at unstable flame conditions caused by the different of combustor temperature and fuel-air mixture distributions.

  • PDF

A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials (일방향 응고 재료의 결정립 성장 방향 섭동이 고압터빈 노즐 저주기 피로 수명에 미치는 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.653-658
    • /
    • 2016
  • High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

NUMERICAL INVESTIGATION OF EFFECTS OF FLUTED EDGE SHAPE ON THRUST IN A ROCKET NOZZLE (로켓 노즐의 끝면 형상이 추력에 미치는 영향성 연구)

  • Kang, Y.J.;Yang, Y.R.;Kim, S.H.;Hwang, U.C.;Youm, Y.I.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.8-12
    • /
    • 2009
  • In this study the performance of the nozzle of a rocket system is evaluated using a CFD code. The main emphasis of the investigation is placed on the effects of the number (9 and 12) and the depth of fluted edge in the rocket nozzle. It is observed that as the depth increases the rolling moment of the nozzle increases while the thrust of the nozzle decreases.

  • PDF

Stabilization of Thermal Plasma in an AC Plasma Generator (교류 글라이딩 아크에 의한 플라즈마 발생의 안정화)

  • Kim, K.S.;Lee, H.S.;Rim, G.H.;Song, K.D.;Lee, W.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1573-1575
    • /
    • 2001
  • 삼상 교류에 의한 플라즈마 발생 장치 중구리튜브 전극을 이용한 아크 글라이딩 식의 비이행형 플라즈마 발생장치는 전극구조가 간단하고 교체가 용이 할 뿐 아니라, 전극과 노즐의 형상을 유해 가스 처리에 충분한 엔탈피를 가지도록 설계될 수 있으므로, DC형과 더불어 차세대 환경정화용 핵심장치로 관심을 모으고 있다. 본 연구에서는 교류형의 특성상 어쩔 수 없이 발생하는 열플라즈마의 플리커를 제어하기 위해 글라이딩 아크의 움직임과 플라즈마 플래임의 움직임을 분석하여 열 플라즈마의 안정화 조건을 정립하고자 하였다. 또한 본 논문에서는 여러 가지 조건에서 수행된 플라즈마에 관련된 수치해석과 플라즈마 발생기의 동작시험의 결과를 바탕으로 삼상교류 열플라즈마를 안정시킬 수 있는 기본적인 조건의 범위를 제시하였으며 이에 대한 토의를 기술하였다.

  • PDF

A study on Spray Characteristic of Fuel Injection Nozzle with Geometrical Shape Changes of Needle Valve (연료분사노즐의 니들밸브 형상변화에 따른 분무특성에 관한 연구)

  • 채재우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 1987
  • The experimental study, using constant pressure injection system, is carried out to investigate the effect of the geometrical shape changes of the needle valve of the effective flow area, the spray angle and the Sauter's Mean Diameter according to needle valve lift for a pintle-type injection nozzle. The results are as follows: 1) With the increase of the needle valve lift, the effective flow area is increased, the spray angle is at first increased and later decreased, and the Sauter's Mean Diameter is decreased. 2) It is also shown that the spray angle is maximum at the rapidly increased region of the effective flow area.

  • PDF

Effect of Internal Geometry and Swirler Vane Angle of Nozzle on Spray Characteristics with Distance from Nozzle Tip (노즐의 내부형상 및 스월러 베인각의 변화가 선단거리에 따른 분무특성에 미치는 영향)

  • Jeong, H.C.;Choi, G.M.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • The purpose of this study is to investigate the effect of swirler vane angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single spray. The characteristics of sprat's have been investigated by measuring the spray angle, droplet size and velocity Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler vane angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber The effect of vane angle un the spray characteristics was greater than the aspect ratio of swirl chamber for single spray.

  • PDF

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

A Study on the Development of Cross-flow Type Vertical Axis Wind Turbine (횡류형 수직축 풍력터빈 개발에 관한 연구)

  • Hwang, Yeong-Cheol;Choi, Young-Do;Kim, Ill-Soo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.493-493
    • /
    • 2009
  • Recently, small vertical axis wind turbine attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow type wind turbine is proposed for small wind turbine development in this study because the turbine has relatively simple structure and high possibility of applying to small wind turbine. The purpose of this study is to investigate the effect of the turbine‘s structural configuration on the performance and internal flow characteristics of the cross-flow turbine model using CFD analysis. The results show that guide nozzle should be adopted to improve the performance of the turbine. Optimization of the nozzle shape will be key-importance for the high performance of the turbine.

  • PDF

Large Eddy Simulation of Fluctuating Mold Level - Effects of Nozzle Geometry on Oscillation Frequency (LES를 이용한 몰드 내 탕면 변동 거동 수치해석 - 노즐 형상에 따른 진동 주파수 분석)

  • Lee, Kyongjun;Yang, Kyung-Soo;Cho, Myung Jong;Hwang, Jong-Yeon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • High speed casting technology is an attractive method to increase the productivity of continuous casting. However, high speed casting causes flow instability of molten steel in a mold. In this study, Large Eddy Simulation (LES) has been performed to identify the characteristics of mold flow for various shapes of submerged entry nozzles. The LES code has been newly developed to efficiently compute the two-phase flow by using the Fractional Step Method (FSM) combined with the Volume of Fluid (VOF) method. The Immersed Boundary Method was used to implement the shape of the submerged entry nozzle. Three cases of discharge angle of the submerged entry nozzle were computed and compared. The current results shed light on improving shape design of a submerged entry nozzle.

Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems (발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.