DOI QR코드

DOI QR Code

Large Eddy Simulation of Fluctuating Mold Level - Effects of Nozzle Geometry on Oscillation Frequency

LES를 이용한 몰드 내 탕면 변동 거동 수치해석 - 노즐 형상에 따른 진동 주파수 분석

  • Received : 2011.05.16
  • Published : 2012.02.25

Abstract

High speed casting technology is an attractive method to increase the productivity of continuous casting. However, high speed casting causes flow instability of molten steel in a mold. In this study, Large Eddy Simulation (LES) has been performed to identify the characteristics of mold flow for various shapes of submerged entry nozzles. The LES code has been newly developed to efficiently compute the two-phase flow by using the Fractional Step Method (FSM) combined with the Volume of Fluid (VOF) method. The Immersed Boundary Method was used to implement the shape of the submerged entry nozzle. Three cases of discharge angle of the submerged entry nozzle were computed and compared. The current results shed light on improving shape design of a submerged entry nozzle.

Keywords

Acknowledgement

Supported by : POSCO

References

  1. J. E. Lee, S. H. Hahn, Y. J. Seok, C. Y. So, and J. K. Yoon, J. Kor. Inst. Met.& Mater. 34, 115 (1996).
  2. S. W. Lee, Y. S. Koo, and Y. K. Shin, J. Kor. Inst. Met.& Mater. 25, 233 (1987).
  3. K. H. Moon, C. H. Lee, P. R. Cha, U S. Yoon, and J. K. Yoon, J. Kor. Inst. Met.& Mater. 36, 1734 (1998).
  4. H. Bai and B. G. Thomas, Metall. Mater. Trans. B 32, 253 (2001). https://doi.org/10.1007/s11663-001-0049-z
  5. B. G. Thomas, L. J. Mika, and F. M. Najjar, Metall. Mater. Trans. B 21, 387 (1990). https://doi.org/10.1007/BF02664206
  6. K. Takatani, Y. Tanizawa, H. Mizukami, and K. Nishimura, ISIJ Int. 41, 1252 (2001). https://doi.org/10.2355/isijinternational.41.1252
  7. D. E. Hershey, B. G. Thomas, and F. M. Najjar, Int. J. Numer. Methods Fluids 17, 23 (1993). https://doi.org/10.1002/fld.1650170104
  8. X. Huang and B. G. Thomas, Can. Metall. Q. 37, 197 (1998). https://doi.org/10.1016/S0008-4433(98)00025-1
  9. Q. Yuan, B. G. Thomas, and S. P. Vanka, Metall. Mater. Trans. B 35, 685 (2004). https://doi.org/10.1007/s11663-004-0009-5
  10. R. Rogallo and P. Moin, Annu. Rev. Fluid Mech. 16, 99 (1984). https://doi.org/10.1146/annurev.fl.16.010184.000531
  11. J. Yang and E. Balaras, J. Comput. Phys. 215, 12 (2006). https://doi.org/10.1016/j.jcp.2005.10.035
  12. C. Meneveau, T. Lund, and W. Cabot, J. Fluid Mech. 319, 353 (2006).
  13. J. Kim and P. Moin, J. Comput. Phys. 59, 308 (1985). https://doi.org/10.1016/0021-9991(85)90148-2
  14. K. J. Lee, K. S. Yang, and C. W. Kang, KSCFE 15, 99 (2010).
  15. C. W. Hirt and B. D. Nichols, J. Comput. Phys. 39, 201 (1981). https://doi.org/10.1016/0021-9991(81)90145-5
  16. J. C. Park, M. M. Kim, H. Miyata, and H. H. Chun, Ocean Eng. 30, 1969 (2003). https://doi.org/10.1016/S0029-8018(03)00041-6
  17. J. C. Martin and W. J. Moyce, Ocean Eng. 244, 321 (1952).
  18. S, Koshizuka and Y. Oka, Nucl. Sci. Eng. 123, 421 (1996). https://doi.org/10.13182/NSE96-A24205