• Title/Summary/Keyword: Rutile phase

Search Result 209, Processing Time 0.02 seconds

Fabrication and Characterization of Photocatalytic TiO2 prepared by Polymer Complex Solution Method (복합고분자 용액법을 이용한 TiO2 광촉매 제조 및 특성 평가)

  • Jang Jeong-Wook;Jeong Young-Keun;Kim Tae-Oh
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.249-254
    • /
    • 2005
  • Titanium dioxide was prepared by Polymer Complex Solution Method(PCSM) according to the mole ratio of Titanium (IV) isopropoxide(TTIP)/solvent and polymer(Poly Ethylene Glycol). Polymer electrolytes were usually made by dispersing preproduced ceramic nanoparticles in a polymer matrix. Using this method, pure and nano-sized $TiO_2$ powder was synthesized through a simple procedure and polymer entrapment route. At the optimum amount of the polymer, the titanium ions are dispersed in solution and a homogeneous polymeric network is formed. The maximum intensity of anatase phase of $TiO_2$ was achieved by calcining at $500^{\circ}C$ for 2h. The synthesized $TiO_2$ powders were nano-sized and the average size was about 50nm. Anatase/Rutile ratio of the synthesized $TiO_2$ was 70%/30%.

Photocatalytic Degradation of Methylene Blue using $TiO_2$ Supported on Activated Carbon (TiO$_2$가 담지된 활성탄을 이용한 Methylene Blue의 광분해)

  • Lee, Jong-Dae;Lee, Tae-Jun;Cho, Kyong-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • The photocatalytic degradation of methylene blue(MB) was investigated using $TiO_2$ as photocatalyst and UV radiation. $TiO_2$ supported with activated carbon(AC) was prepared by SOL-GEL method and depended on several parameters such as the mass ratio of $TiO_2/AC$, pH and experimental time. The presence of the anatase and rutile crystal phase was determined by XRD analyses of the prepared $TiO_2$. The degradation of MB with $TiO_2/AC$ was about 20% higher than that of AC alone. A variation of photodegradation was negligible under UV radiation conditions ( ${\geq}$ 40W). It was experimentally showed that the photodegradation rate was increased with increasing the amount of photocatalyst. The optimal catalyst was prepared by impregmation of $5wt%-TiO_2$ with AC and was calcined at $300^{\circ}C$, and showed about 99% removal efficiency for 3hrs.

Preparation of $TiO_2$ Powder by Sol-Gel Method and Their Photocatalytic Decomposition Effect of Synthetic Detergents for Kitchen Use (졸-겔법에 의한 $TiO_2$ 분체 합성 및 주방용 합성세제의 광분해 효과)

  • Chung, Young-Joon;Roo, Wan-Ho;Yang, Chun-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.140-147
    • /
    • 2004
  • An aqueous solution of a commercial liquid synthetic detergent for kitchen use was photodecomposed in the presence of titanium dioxides powder under an atmosphere of air at room temperature. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio($H_2O$/titanium iso-propoxide) and calcined at $500^{\circ}C$. All titanium dioxides were characterized by XRD, BET surface area analyzer and UV-VIS spectrometer. The surface area of titanium dioxides prepared at R ratio=6 appeared higher volume about 20% than commercial $TiO_2$ catalysts. XRD patterns of titania particles were observed mixing phase together with rutile and anatase type. Titanium dioxides prepared by sol-gel method show higher activity about 6% than commercial $TiO_2$ catalysts on the photocatalytic degradation of a commercial liquid synthetic detergent for kitchen. The concentration of the detergent decreased to about 90% of its initial value at illumination times of 2 hour. Illumination for 30 minutes decreased the concentration of oxygen to about one-fifth of the initial value.

Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs (화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성)

  • Chang, Han Kwon;Jang, Hee Dong;Kim, Tae-Oh;Kim, Sun Kyung;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF

Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • The Fe-treated CNT/$TiO_2$ photocatalysts mixed with anatase and rutile phase have been developed for the decomposition of non-biodegradable different organic dyes like methylene blue (MB), rhodamine B (Rh.B), and methyl orange (MO) in two conditions as ultraviolet and visible light respectively. The results indicate that all the Fe-CNT/$TiO_2$ composites proved to be more efficient photocatalysts since degradation of MB at higher reaction rates, tthe decomposition rate of different dyes increases with an increase of $Fe^{3+}$ concentration in composites the highest rate of decomposition of different dyes was noted under UV irradiation. These results can indicate that the large CNT network is facilitate the electron transfer and strongly adsorb dye molecules on the texted photocatalysts, iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. And Fe particles can generate more photoinduced electrons to conduction band of $TiO_2$ under visible light irradiation. The composites of Fe-CNT/$TiO_2$ photocatalysts synthesized by a sol-gel method were characterized by BET, TEM, SEM, XRD and EDX.

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer (광산란층을 이용한 염료감응형 태양전지의 특성)

  • Eom, Tae-Sung;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.558-562
    • /
    • 2012
  • As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.

Synthesis of Praseodymium-Doped TiO2 Nanocatalysts by Sol-Microwave and Their Photocatalytic Activity Study

  • Huang, Fengping;Wang, Shuai;Zhang, Shuang;Fan, Yingge;Li, Chunxue;Wang, Chuang;Liu, Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2512-2518
    • /
    • 2014
  • The praseodymium-doped $TiO_2$ photocatalyst samples, which could degrade methyl orange under UV irradiation, were prepared by sol-microwave method for improving the photocatalytic activity of $TiO_2$. The resulting materials were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra, Fourier transform infrared spectra (FTIR) and Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS). It was found Pr doping retarded the growth of crystalline size and the phase transformation from anatase to rutile, and narrowed the band gap energy. Praseodymium doping brought about remarkable improvement in the photoactivity. The optimal dopant amount of Pr was 2% by molar of cement and the calcination temperature was $500^{\circ}C$ for the best photocatalytic activity. The improvement of photocatalytic activity was ascribed to the occurrence of lattice distortion and the effective containment of the recombination of the electron-hole by $Pr^{3+}$.

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

Properties of $Zn_xSnO_2$ Nanorods Synthesized by Hytrothermal Method

  • Yeo, Chang-Su;Lee, Gwan-Ho;Kang, Hee-Kyoung;Lee, Kyung-Hee;Yu, Byung-Yong;Song, Jong-Han;Chae, Kuen-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.313-313
    • /
    • 2012
  • ZnO and $SnO_2$, well-known wide direct band-gap semiconductors, have been considered as the most promising functional materials due to their highly sensitive gas sensing and excellent optical properties. ZnO/$SnO_2$ epitaxial hetrostructure exhibited unique luminescence properties in contrast with individual tetra-pod ZnO and $SnO_2$ nanostructures. Polycrystalline $SnO_2$-based samples $Zn_xSn_{1-x}O_2$(x=0, 0.01, 0.03, 0.05) were prepared by solid state reaction and eco-friendly hydrothermal techniques. Scanning electron microscopy equipped with electron dispersive x-ray spectra confirms the formation of near stoichiometric $Zn_xSn_{1-x}O_2$ nanorods of diameter ~10 nm. X-ray diffraction analysis revealed the rutile structure, except for x=0.07, which may have a small part of $Zn_2SnO_4$ as a secondary phase.

  • PDF

Electrochemical hydrothermal treatment on Pure Titanium by the method of Cathodic reduction (음극환원법에 의한 Pure Ti의 전기화학적 열수처리)

  • Song, Jae-Joo;Kim, Kyeong-Seon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.7 no.4
    • /
    • pp.471-479
    • /
    • 2007
  • The purpose of this study was to examine the optimum condition of impulse during the anodic spark oxidation applying pulse current as well as to find the excellent condition for HA precipitation the after electrochemical hydrothermal treatment by cathode reduction method. After anodic spark oxidation, the anodized specimen and the Pt plate connected cathode and anode, respectively. Hydrothermal treatment performed at 90, 120, $150^{\circ}C$ for 2 hours in the electrolyte containing $K_2HPO_4$, $CaCl_2{\cdot}2H_2O$, Tris(Hydroxymethyl)-$(CH_2OH)_3\;CNH_2$(Aminomethane), and NaCl. The optimum impulse voltage for anodic spark oxidation was 350V. The optimum pulse cycle measured at 10 mS. The HA crystals precipitated excellently by cathode reduction at $150^{\circ}C$ for 2 hours. The phases of anatase, rutile, and HA coating on the surface of modified titanium surface immersed in Hanks' solution for 3weeks were detected by XRD measurement and the intensity of HA crystal phase has increased by temperature and time of hydrothermal treatment. According to the our experiments, we found that Pure Ti will be good materials of bioactivity and biocompatibility.

  • PDF