DOI QR코드

DOI QR Code

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul (Department of Materials Science and Engineering, Kunsan National University)
  • Received : 2019.06.15
  • Accepted : 2019.07.09
  • Published : 2019.07.31

Abstract

A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

Keywords

References

  1. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, "Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., 95 [3] 735-58 (1995). https://doi.org/10.1021/cr00035a013
  2. B. O'Regan and M. Gratzel, "A Low-Cost, High-Efficiency Solar Cell based on Dye-Sensitized Colloidal $TiO_2$ Films," Nature, 353 737-40 (1991). https://doi.org/10.1038/353737a0
  3. H. Wang, Y. Wu, and B. Q. Xu, "Preparation and Characterization of Nanosized Anatase $TiO_2$ Cuboids for Photocatalysis," Appl. Catal., B, 59 [3-4] 139-46 (2005). https://doi.org/10.1016/j.apcatb.2005.02.001
  4. H. Yan, F. B. Christophe, T. H. Brian, H. S. William, and A. Stein, "General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion," Chem. Mater., 12 [4] 1131-41 (2000).
  5. R. C. Schroden and A. Stein, "3D Ordered Macroporous Materials," pp. 465-93 in Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles, Ed. by F. Caruso, Wiley-VCH, Weinheim, 2003.
  6. M. C. Chang, "Three Dimensionally Ordered Microstructure of Polycrystalline $TiO_2$ Ceramics with Micro/Meso Porosity," J. Korean Ceram. Soc., 53 [2] 227-33 (2016). https://doi.org/10.4191/kcers.2016.53.2.227
  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science, 293 [5528] 269-71 (2001). https://doi.org/10.1126/science.1061051
  8. A. B. Karen, M. S. Lidiaine, M. P. Roberto, M. B. N. Newton, , S. Jenny, W. B. Detlef, O. T. P. Antonio, and E. H. M. Antonio, "Characterization of a Highly Efficient Ndoped $TiO_2$ Photocatalyst Prepared via Factorial Design," New J. Chem., 40 [9] 7846-55 (2016). https://doi.org/10.1039/c6nj00704j
  9. L. Gomathi Devi and R. Kavitha, "Review on Modified N-$TiO_2$ for Green Energy Applications under UV/visible Light: Selected Results and Reaction Mechanisms," RSC Adv., 4 [54] 28265-99 (2014). https://doi.org/10.1039/C4RA03291H
  10. J. Klosowshi, I. Endler, A. Leonhardt, and D. Schlfaer, "Investigations on Microstructure, Composition and Properties of PECVD $TiN_x$-Coatings," Fresenius' J. Anal. Chem., 353 [5-8] 702-6 (1995). https://doi.org/10.1007/BF00321354
  11. M. Zhang and J. He, "Ab-initio Calculation of Elastic Constants of TiN," Surf. Coat Technol., 142-144 125-31 2001. https://doi.org/10.1016/S0257-8972(01)01221-X
  12. M. C. Chang, "Preparation of Anatase Particles through Electro-Dialysis of $TiCl_4$ Aqueous Solution," J. Korean Ceram. Soc., 53 [3] 325-31 (2016). https://doi.org/10.4191/kcers.2016.53.3.325
  13. N. H. Adjichristidis, H. Iatrou, S. Pispas, and M. Pitsikalis, "Anionic Polymerization: High Vacuum Techniques," J. Polym. Sci. Part A: Polym. Chem., 38 [18] 3211-34 (2000). https://doi.org/10.1002/1099-0518(20000915)38:18<3211::AID-POLA10>3.0.CO;2-L
  14. K. Y. Kwon, W. M. Lee, D. H. Cho, and T. H. Chang, "Apparatus for Anionic Polymerization under Inert Gas and Polymerization of Polystyrene," Korea Polym. J., 7 [5] 321-24 (1999).
  15. J.-K. Park and H.-K. Kim, "Preparation and Characterization of Hydrophilic $TiO_2$ Film," Bull. Korean Chem. Soc., 23 [5] 745-48 (2002). https://doi.org/10.5012/bkcs.2002.23.5.745
  16. S. I. Seok, M. Vithal, and J. A. Chang, "Colloidal $TiO_2$ Nanocrystals Prepared from Peroxotitanium Complex Solutions: Phase Evolution from Different Precursors," J. Colloid Interface Sci., 346 [1] 66-71 (2010). https://doi.org/10.1016/j.jcis.2010.02.049
  17. M. C. Chang, "Yttrium-Stabilized Zirconia Particles Prepared Using Electro-Dialysis of (Zr,Y)OCl2 Aqueous Solution," J . Korean Ceram. Soc., 51 [5] 466-71 (2014). https://doi.org/10.4191/kcers.2014.51.5.466
  18. Y. S. Gong, R. Tu, and T. Goto, "Microstructure and Preferred Orientation of Titanium Nitride Films Prepared by Laser CVD," Mater. Trans., 50 [8] 2028-34 (2009). https://doi.org/10.2320/matertrans.m2009101
  19. Li Du and J. H. Edgar, "Sublimation Growth of Titanium Nitride Crystals," J. Mater. Sci.: Mater. Electron., 21 [1] 78-87 (2010). https://doi.org/10.1007/s10854-009-9873-8
  20. H. O. Pierson, Handbook of Refractory Carbides and Nitrides; p. 193, William Andrew Publishing/Noyes, 1996.
  21. P. Patsalas and S. Logothetidis, "Optical, Electronic, and Transport Properties of Nanocrystalline Titanium Nitride Thin Films," J. Appl. Phys., 90 [9] 4725-34 (2001). https://doi.org/10.1063/1.1403677
  22. M. Horn, C. F. Schwertfeger, and E. P. Meagher, "Refinement of the Structure of Anatase at Several Temperatures," Z. Kristallogr., 136 [3-4] 273-81 (1972). https://doi.org/10.1524/zkri.1972.136.3-4.273
  23. U. Diebold, "The Surface Science of Titanium Dioxide," Surf. Sci. Rep., 48 [5-8] 53-229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  24. T. Mazza, E. Barborini, P. Piseri, and P. Milani, "Raman Spectroscopy Characterization of $TiO_2$ Rutile Nanocrystals," Phys. Rev. B, 75 [4] 045416 (2007). https://doi.org/10.1103/physrevb.75.045416
  25. F. D. Hardcastle, "Raman Spectroscopy of Titania ($TiO_2$) Nanotubular Water-Splitting Catalysts," J. Arkansas Acad. Sci., 65 [1] 9 (2011).
  26. C. C. Chen, X. T. Liang, W. S. Tse, I. Y. Chen, and J. G. Duh, "Raman Spectra of Titanium Nitride Thin Films," Chin. J. Phys., 32 [2] 205-10 (1994).
  27. U. Balachandran and N. G. Eror, "Raman Spectra of Titanium Dioxide," J. Solid State Chem., 42 [3] 276-82 (1982). https://doi.org/10.1016/0022-4596(82)90006-8
  28. M. Horn, C. F. Schwerdtfeger, and E. P. Meagher, "Refinement of the Structure of Anatase at Several Temperatures," Z. Kristallogr., 136 [3-4] 273-81 (1972). https://doi.org/10.1524/zkri.1972.136.3-4.273
  29. Don T. Cromer and K. Hwrrington, "The Structures of Anatase and Rutile," J. Am. Chem. Soc., 77 [18] 4708-9 (1955). https://doi.org/10.1021/ja01623a004
  30. S. D. Ovhal and P. R. Thakur, "Photocatalytic Applications of Room Temperature Rutile $TiO_2$ Nanoparticles"; pp. 149-52 in Proceedings of the 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1). Pune, India, 2012.
  31. K. A. Borges, L. M. Santos, R. M. Paniago, N. M. Barbosa Neto, J. Schneider, D. W. Bahnemann, A. O. T. Patrocinio, and A. E. H. Machado, "Characterization of a Highly Efficient N-doped $TiO_2$ Photocatalyst Prepared via Factorial Design," New J. Chem., 40 [9] 7846-55 (2016). https://doi.org/10.1039/c6nj00704j