• Title/Summary/Keyword: Running speed

Search Result 1,200, Processing Time 0.028 seconds

Analysis on the Hunting Motion of the KTX Power Car (KTX 동력차의 헌팅운동 해석)

  • Lee, Seung-Il;Choi, Yeon-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.755-762
    • /
    • 2004
  • Dynamic analysis of the KTX can predict the dynamic motions in test drive. In this study an analytical model of the KTX is developed to find the critical speed. The numerical analysis for the nonlinear equation motions of 17 degrees of freedom shows the running stability and the critical speed due to the hunting motion of the KTX. Also, the vibration modes of the KTX are calculated using the ADAM/RAIL software, which show that the critical speed occurs for the yawing modes of the car body and the bogie. Finally, this paper shows that the critical speed of the KTX could be changed with the modifications of the design parameters of wheel conicity or wheel contact length.

A Study on Temperature Characteristics for Traction Motor of High Speed Railway (고속철도차량 전동기의 열적 특성 연구)

  • Han, Young-Jae;Kim, Seog-Won;Kim, Sang-Soo;Kim, Ki-Hwan;Koo, Hun-Mo;Choi, Jung-Sun;Kim, Jung-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1123-1127
    • /
    • 2006
  • There are various elements that have influence on safety and reliability of high speed railway. Among them, mechanical characteristics of traction motors are very important. Therefore, we verified that temperature characteristics have influence on damage and durability of these parts. We designed a measurement system for temperature test, and could measure the temperature of each device by the system. As the result of temperature test, we could confirm that the traction motors on Korean High-Speed Train satisfy the criteria. From this test, we get information of the traction motor about the temperature characteristic during running speed and running time.

Test and evaluation on the suitability of operating high speed train in electrified conventional line through test run of HSR-350x (한국형 고속열차를 활용한 기존선 전철화 구간에서 고속열차 운행의 적합성 평가)

  • Mok, Jin-Yong;Kim, Young-Guk;Kim, Ki-Hwan;Cho, Min-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.229-235
    • /
    • 2007
  • The KTX, which have opened the revenue service in April 2004, is operating in Kyoung-Bu high-speed line and electrified conventional Ho-Nam line, and the more the electrification are enlarged, the more the requirement of operating of high speed train would be increased. In this paper, the result of test run and evaluation on the suitability of operating high speed train in electrified conventional line between Dae-jeon and East Dae-gu was reviewed. Evaluation and analysis was executed in specific categories, such as operation & running performance of the train considering vibration characteristics based on UIC 518, ride comfort and current collection, and response sensitivity of ATS device for signalling from track facility. The result of this running test was evaluated and considered as a good practice for revenue operation of high speed train in electrified conventional line between Dae-jeon and Dae-gu.

  • PDF

Optimal Control Strategy of Korea High Speed Train Prototype for the Minimization of Energy Consumption (에너지소비를 최소로 하는 고속전철 최적제어 전략)

  • Lee Tae-Hyung;Park Choon-Soo;Seo Sung-Il;Kim Ki-Hwan;Shin Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1385-1387
    • /
    • 2004
  • This paper presents a modelling methodology using fuzzy logic and train performance simulation for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting. As a case study, the simulation is carried out for an economical run of korea high speed train prototype, and the results of fuzzy model described.

  • PDF

Performance Test of Centrifugal Compressor for Microturbine with Running Tip Clearance (운전 익단간극을 고려한 마이크로터빈 코어용 원심압축기의 성능특성 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Cha, Bong-Jun;Yang, Soo-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.411-418
    • /
    • 2004
  • Tip clearance of centrifugal compressor affects the performance. Larger tip clearance results in lower efficiency. What really affects the performance is the running tip clearance, not the cold tip clearance. When the compressor is operating, blade strain and the pressure difference between impeller backplate and hub affects the running tip clearance. This paper describes measured running tip clearance and its effects on the performance of centrifugal compressor. Cold tip clearance before operation was 0.4 mm and running tip clearance varied from 0.86 mm to 0.25 mm with impeller exit pressure. As the pressure at impeller exit increases, the routing tip clearance tends to decreases. The target running tip clearance for compressor at $100\%$ speed was 0.3 mm and it turned out to be exactly 0.30 mm from experiment.

  • PDF

Impact Factor of High-Speed Railway Bridges from Dynamic Response under KTX Running (고속철도교량의 동적응답에 의한 충격계수 산정)

  • Yoon, Hye-Jin;Chin, Won-Jong;Kwark, Jong-Won;Hwang, Eui-Seung;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1631-1635
    • /
    • 2011
  • To consider dynamic magnification effect at the static design stage, impact load factor is applied to design load. Current impact load factor adopted EUROCODE without verification while Japan suggested impact load factor including velocity of high-speed train throughout theoretical and experimental studies. On the purpose of evaluate current impact load factor, this study investigated the calculation of impact load factor from dynamic response of running train.

  • PDF

A Study on the Wheel Wear of High Speed Train Running on the Conventional Line (경부고속열차의 기존선 주행시 차륜마멸특성에 관한 연구)

  • 강부병;이희성
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • This paper describes the characteristics of wheel wear of high speed train running on the conventional line. Conventional line has many curved tracks that cause severe wheel flange wear. The influences of lubrication, cant deficiency, curve radius on wheel wear are also described considering the operation performance of the highspeed trainset. A method of calculation using contact patch work model is presented for determination of the evolution by wear of railway wheels.

A Quantitative analysis about Wheel Load Variations (실 주행열차의 윤중변동에 대한 정량적 분석)

  • Kim Hyun-Min;Oh Ji-Tack
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.728-732
    • /
    • 2004
  • The purpose of this study is to examine wheel load variations on the bridge. It had been reported that wheel load variations involved un-sprung mass, sprung mass and train running speed, but there are no examples that measured in the running speed actuality track. In this experiment, Attach measurement sensor to equal distance on the track and measured wheel loads by using a dynamic shear strain technique.

  • PDF

3-Dimensional Analysis of the Running Motion in the Max-Velocity Phase and the Fatigue Phase During 400m Sprint by Performed Elementary School Athletes (달리기시 최고 속도 및 피로 구간의 3차원 동작 분석)

  • Bae, Sung-Jee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2006
  • This study was conducted to investigate the running motion in the max-velocity phase(150-160m) and the fatigue phase(350-360m) during 400m sprint by performed elementary school athletes. Eighteen elementary school male athletes who achieved at least the 3rd place in the sprint at the Korea Gangwon-Do elementary school track and field meetings during 2004 and 2005 were selected as subjects. The running motions performed by the subjects were recorded using two 8mm high speed cameras at the nominal speed of 100 frames per second. The Direct Linear Transformation technique was adopted from the beginning of filming to the final stage of data extraction. KWON 3D motion analysis package program was used to compute the 3 Dimensional coordinates, smoothing factor in which lowpass filtering method was used and cutoff frequency was 6.0 Hz. The movement patterns during foot touchdown and takeoff for the running stride were related with the biomechanical consideration. Within the limitations of this study it is concluded: In order to increase running velocity, several conditions must be fullfilled at the instant of leg touchdown and takeoff during the fatigue phase(350-360m). First, the body C.O.G(Center of Gravity) height should be raised at the instant of leg touchdown and takeoff during the fatigue phase. Second, the foot contact time should be shortened and the takeoff distance should be increased at the foot takeoff during the fatigue phase. Third, the shank angular velocity with respect to a transverse axis through the center of gravity should be increased during the leg touchdown and takeoff in the fatigue phase. Forth, the active landing style described as clawing the ground with the sole of the foot should be performed during the leg touchdown and takeoff in the fatigue phase) phase. Fifth, In order to increase running velocity in the fatigue phase while taking a slightly greater leg knee angle and body lean angle within the range of the subject's running motion during the fatigue phase would result in greater flight distance.

A Study on the Running Stability of the High-speed Train by Wind Pressure and Crossing (고속열차의 풍압 및 교행에 의한 주행안정성 연구)

  • Jeon, Chang-Sung;Yun, Su-Hwan;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.880-887
    • /
    • 2020
  • This study was conducted to investigate the running stability of a high-speed train operated in a tunnel and an open field when external forces such as wind pressure and train crossings were applied to the vehicle. With no external force, the running stability at 400 km/h was examined, and the wheel weight reduction ratio, lateral pressure of the axles, and derailment coefficient satisfied the criteria of the technical standards for a high-speed train. When the distance between the centers of the tracks is 4.6 m, the external force caused by train crossing slightly affects the lateral acceleration of the vehicle but does not significantly affect the wheel weight reduction rate, lateral pressure, and derailment coefficient in a tunnel and open filed. When the distance is 4.6~5.0 m, the wheel weight reduction ratio, lateral pressure, and derailment coefficient satisfy the criteria with 20 m/s wind. When the wind speed was 30 m/s, the derailment coefficient satisfied the criteria, and the other variables exceeded them. It is predicted that a high-speed train can be operated safely at 400 km/h with wind speed of up to 20 m/s, and it should be slowed down at a wind speed of 30 m/s.