• Title/Summary/Keyword: Runner turbine blade

Search Result 41, Processing Time 0.025 seconds

Study on Performance Improvement of an Axial Flow Hydraulic Turbine with a Collection Device

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Hirama, Sou;Kikuchi, Norio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • The portable hydraulic turbine we previously developed for open channels comprises an axial flow runner with an appended collection device and a diffuser section. The output power of this hydraulic turbine was improved by catching and accelerating an open-channel water flow using the kinetic energy of the water. This study aimed to further improve the performance of the hydraulic turbine. Using numerical analysis, we examined the performances and flow fields of a single runner and a composite body consisting of the runner and collection device by varying the airfoil and number of blades. Consequently, the maximum values of input power coefficient of the Runner D composite body with two blades (which adopts the MEL031 airfoil and alters the blade angle) are equivalent to those of the composite body with two blades (MEL021 airfoil). We found that the Runner D composite body has the highest turbine efficiency and thus the largest power coefficient. Furthermore, the performance of the Runner D composite body calculated from the numerical analysis was verified experimentally in an open-channel water flow test.

Selection of Optimal Number of Francis Runner Blades for a Sediment Laden Micro Hydropower Plant in Nepal

  • Baidar, Binaya;Chitrakar, Sailesh;Koirala, Ravi;Neopane, Hari Prasad
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.294-303
    • /
    • 2015
  • The present study is conducted to identify a better design and optimal number of Francis runner blades for sediment laden high head micro hydropower site, Tara Khola in the Baglung district of Nepal. The runner is designed with in-house code and Computational Fluid Dynamics (CFD) analysis is performed to evaluate the performance with three configurations; 11, 13 and 17 numbers of runner blades. The three sets of runners were also investigated for the sediment erosion tendency. The runner with 13 blades shows better performance at design as well as in variable discharge conditions. 96.2% efficiency is obtained from the runner with 13 blades at the design point, and the runners with 17 and 11 blades have 88.25% and 76.63% efficiencies respectively. Further, the runner with 13 blades has better manufacturability than the runner with 17 blades as it has long and highly curved blade with small gaps between the blades, but it comes with 65% more erosion tendency than in the runner with 17 blades.

Comparative study of sediment erosion on alternative designs of Francis runner blade

  • Rajkarnikar, Bidhan;Neopane, Hari P.;Thapa, Biraj S.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.183-192
    • /
    • 2015
  • The aim of this study was comparative analysis of sediment-induced erosion on optimized design and traditional design of Francis runner blade. The analysis was conducted through laboratory experiments in a test rig called Rotating Disc Apparatus. The results showed that the extent of erosion was significantly less in the optimized design when compared based on the material loss. It was observed that the optimized design could reduce sediment erosion by about 14.4% if it was used in place of the reference design for entire duration of the experiment. Based on the observations and results obtained, it has been concluded that the optimization of hydraulic design of blade profile of Francis runner can significantly reduce the effect of sediment-induced erosion.

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

Physics-based Surrogate Optimization of Francis Turbine Runner Blades, Using Mesh Adaptive Direct Search and Evolutionary Algorithms

  • Bahrami, Salman;Tribes, Christophe;von Fellenberg, Sven;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and global search capabilities.

Hydraulic Performance Characteristics of Kaplan Turbine (카프란수차의 수력학적 성능특성)

  • Lee C. H.;Park W. S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.443-446
    • /
    • 2005
  • The Kaplan turbine model has been tested and analyzed. The blade angle and the guide vane opening of the turbine model were designed to be varied according to the best combination of guide vane and runner blade opening. When the changes in head and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed model in this study will be suitable for small hydro power stations with large changes in head and load.

  • PDF

Development of Kaplan Type Turbine for Low Head Hydro Resources (저낙차 수자원활용을 위한 카프란수차 개발)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1992-1996
    • /
    • 2007
  • The Kaplan turbine model has been tested and analized. The blade angle and the guide vane opening of the turbine model were designed to be varied according to the best combination of guide vane and runner blade opening. When the changes in head and output were comparatively large, the efficincy drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed model in this study will be suitable for small hydro power stations with large changes in head and load.

  • PDF

A Study on the Nozzle Shapes of a Cross-Flow Type Hydro Turbine for Wave Power Generation (파력발전용 횡류형 수력터빈의 노즐형상에 관한 연구)

  • Choi, Young-Do;Kim, Chang-Coo;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shapes on the performance and internal flow characteristics of a cross-flow type hydro turbine for wave power generation. The performance of the turbine is calculated with the variation of rotational speed for 4 types of the nozzle shape using a commercial CFD code. The results show that nozzle shape should be designed considering available head of the turbine. Best efficiencies of the turbine by 4 types of the nozzle shape do not change largely but overall performances varies mainly by the nozzle width. The output power of the cross-flow type hydro turbine changes considerably by the nozzle shape and a partial region of stage 2 in the runner blade passage produces maximum regional output power in comparison with the other runner blade passage areas.

CFD Performance analysis of Micro Tubular-type hydro turbine by blade shape (블레이드 형상 변화에 따른 마이크로 튜블러 수차의 CFD 성능해석)

  • Park, Ji-Hoon;Hwang, Young-Cheol;Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.1-206.1
    • /
    • 2011
  • Recently, various developments in the area of small hydropower have being made and small hydro turbines are suitable for domestic use because it is a clean and renewable energy source. A small hydropower generator produces power by using the different water pressure levels in pipe lines and energy which was initially wasted by use of a reducing valve at the end of the pipeline is instead collected by a tubular-type hydro turbine in the generator. In this study, in order to acquire the performance of tubular-type hydro turbine applied, the output power, head, efficiency characteristics due to the different guide vane and runner vane angle are examined in detail. Moreover, influences of pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF