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Abstract 

A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial 
runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in 
order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a 
physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two 
derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main 
characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head 
Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and 
global search capabilities. 
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1. Hydraulic Turbine Design Optimization Process 
Big changes in global energy demand, increasing environmental concerns, and growth potential of cost-efficient hydroelectric 

energy, have recently resulted in more demand to design hydraulic turbines which are more efficient and durable. As design challenges 
are getting more complex, runner designers rely more than ever on engineering and simulation tools, especially computational fluid 
dynamics (CFD), to obtain reliable designs with a competitive time and cost. Although runner designers already employ CFD tools to 
evaluate their designs, there is a strong need to integrate CFD analyses more tightly in the design chain using efficient optimization 
methods to obtain more efficient design processes.  

The full range of CFD methods have been utilized in the optimization of hydraulic turbine runner blades. Low-fidelity inviscid 
models (e.g. potential flow) have been employed by some researches such as Holmes and McNabb [1]. However, they are not accurate 
enough in their prediction of flow behavior, mainly due to lack of physics. High-fidelity viscous models have been used alone to 
optimize the runner as well (e.g. using turbulent RANS solvers, by Franco-Nava et al. [2] and Pilev et al. [3]); but they are too 
expensive and slow for iterative industrial runner design processes. To reduce high-fidelity analyses in the optimization loop, surrogate-
based optimization approaches have been increasingly employed by researchers, using either mathematical surrogates or physic-based 
surrogates. Mathematical surrogates are computationally inexpensive approximation models constructed from a given number of high-
fidelity evaluations. For instance, artificial neural network was applied by Derakhshan et al. [4] to reduce Navier-Stokes solver calls 
during the optimization of a low-head axial hydro turbine by an evolutionary algorithm. Another popular mathematical surrogate, radial 
basis functions, was employed by Georgopoulou et al. [5].  

Although those mathematical surrogates have been used for blade shape optimizations, they still require a large number of high-
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fidelity viscous evaluations to update and to ensure that they yield reasonably accurate results. For this reason, physics-based surrogate 
can be a better alternative in some situations, which uses simplified physics of the problem (i.e. low-fidelity evaluations). Physics-
based surrogates are usually used in multi-fidelity frameworks mainly in order to correct low-fidelity evaluations of objectives and 
constraints using high-fidelity results. 

Beside all the aforementioned researches, industrial runner design process currently relies extensively on the designer’s intuition 
and experience, using both inviscid and viscous flow analyses, but mostly without using an optimizer. Runner designers can use fast 
inviscid flow solvers, to carry out most design iterations in early phase of the design process. The high-fidelity analyses are also 
considered to further assess the design quality. To fulfil industrial design needs, a new practical multi-fidelity methodology has been 
developed using a physics-based surrogate optimization in the low-fidelity phase. In this methodology the optimizer employs a 
computationally-cheap inviscid flow solver in the low-fidelity phase. The low-fidelity optimization problem is corrected by accurate 
high-fidelity information in an overall design loop. Previous investigations (e.g. by Alexandrov et al. [6], Robinson et al. [7], and by 
Leifsson and Koziel [8]) indicate that multi-fidelity methods require much fewer high-fidelity evaluations than mathematical surrogates 
to obtain a given level of accuracy. To comply with runner designers’ approaches, the proposed design framework involves all existing 
design resources (see Fig. 1), adding an automatic optimization loop to decrease designer interactions. 

 
Fig. 1 Runner design loop interactions 

 
In the next section, the multi-fidelity optimization methodology is presented. In section 3, a case study is presented using a low-

head Francis runner. Even though we presented the multi-fidelity methodology using the same test case in 27th IAHR Symposium on 
Hydraulic Machinery and Systems [9], the current enhanced paper focuses on how the exploration capabilities of optimization methods 
affect the optimization efficiency and robustness to obtain good Francis runner designs. Mesh adaptive direct search (MADS) and 
evolutionary algorithm have been employed, which are mostly well-known as good local- and global search methods respectively. 
Among different types of derivative-free optimization methods, these two methods have demonstrated their abilities in hydraulic 
optimization problems. 

2. Multi-Fidelity Design Optimization Methodology 
2.1 Low-Fidelity Phase 

The main iterative computations are carried out in the low-fidelity phase which contains the low-fidelity optimization loop (see 
Fig. 2). It aims to approach the main design characteristics via thousands of fast and computationally inexpensive low-fidelity (i.e. 
inviscid flow) evaluations within an optimization loop. This loop starts with a parameterized model using a few design variables 
representing the initial geometry. Inviscid flow field calculations produce the required information, such as velocity and pressure 
distributions on the blade, to evaluate objective functions and constraints. The optimizer determines new design variable values, 
based on the improvement or deterioration in the objective and constraint values. Since inviscid flow solvers cannot consider 
viscous effects, the low-fidelity optimization phase focuses on meeting specific target flow characteristics that are indirectly 
associated with low energy losses (equivalently high machine efficiency) and cavitation absence at the given operating conditions. 
In this project, a potential flow solver has been chosen as the physics-based surrogate. 

 

 
Fig. 2 Multi-fidelity design optimization algorithm 
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In this investigation, the low-fidelity evaluations cannot be used to determine derivative information with enough accuracy. 

Moreover, the complexity of the design space and presence of many local optimums requires both local and global design space 
explorations. For these reasons, we have selected two different derivative-free optimization methods. NOMAD (Non-smooth 
Optimization by Mesh Adaptive Direct Search) [10] has been selected as an open source [11] C++ implementation of the Mesh 
Adaptive Direct Search algorithm [12]. Also, a well-known evolutionary algorithm has been used by employing an optimization 
code, evolutionary algorithm system (EASY) [13]. It has been used in similar investigations, such as Francis runner and radial 
pump impeller optimization [14] and draft tube optimization [15]. The details of this optimizer and evolutionary algorithm can be 
found in [16]. 

2.2 Filtering Process 
Based on the number of objectives, the dominant solution or a set of them (i.e. Pareto optimal solutions) can be identified after 

the low-fidelity optimization. However, differences between low-fidelity optimization results and high-fidelity Navier-Stokes 
results are expected, which are due to assumptions made through the use of inviscid flow evaluations. Preliminary investigations 
have shown that other feasible optimization solutions, not too far from dominant solutions, can also bring high efficiency in 
Navier-Stokes evaluations. Therefore, a versatile filtering algorithm (filtering unit in Fig. 2) has been developed to select a few 
promising candidates which are geometrically different and dominant in their own territories. These candidates are transferred to 
the high-fidelity phase for Navier-Stokes evaluations.  

The filtering process contains the following parts: 
• Filtering feasible optimization solutions. 
• Mapping the design space into a distributing standard hypercube. 
• Distributing those solutions into small unit-length hypercubes. 
• Selecting one dominant candidate from each unit-length hypercube. 
• Selecting a few geometrically-different candidates out of all selected candidates via a clustering method. 
The details of proposed filtering process are available in [17]. 

2.3 High-Fidelity Phase 
In the high-fidelity phase, a viscous flow solver is used to accurately evaluate a few selected candidates. It aims to choose the 

best design candidate which has a good efficiency at the right operating condition, and minimum cavitation. This design candidate 
may be transferred into the low-fidelity phase as a new initial design for the next optimization step, or selected as the final design 
based on certain convergence criteria or computational budget limit. The number of design variables of the best candidate may be 
increased when it is transferred, mainly in order to give more flexibility to the optimizer to satisfy real constraints in the next step. 
By analyzing the results of the high-fidelity phase, it is possible to recalibrate the objectives and constraints, in order to obtain the 
desired results and expected final goals in the high-fidelity phase. 

The commercial Navier-Stokes code ANSYS-CFX has been employed for the flow field simulations using the standard two-
equation k-ԑ RANS turbulence model. Due to rotational periodic conditions, the viscous flow analysis is performed only for a 
single passage of the runner flow. This domain is discretized using approximately 200,000 structured cells. Details of the 
methodology, integrated tools and validations can be found in the references [18-20]. 

3. Low-Fidelity Optimization Arrangement 
All multi-fidelity optimization formulations including the low-fidelity optimization problem have been presented extensively 

in [21]. The low-fidelity optimization problem is formulated as: 
Minimizing )(yfi       

Subject to 0)( ≤yg j  ; ul yyy ≤≤     
Where “y” is the N-dimensional vector of design variables, and “yl” and “yu” are respectively the lower and upper bounds of 

design variables. One objective and three constraints have been defined in this project. 

3.1 Objective and Constraints 
Previous investigations have shown that minimizing the length of the blade is a good way to drive the optimization towards 

good runner geometries. The objective function is calculated from summation of weighted section lengths. 
Different types of constraints may be used in hydraulic runner optimization. For this investigation, three constraints control the 

most important design criteria addressing minimum losses and maximum efficiency at the targeted operating condition: 
• Velocity constraint: To control the losses in the draft tube, it is necessary that the runner delivers an appropriate 
tangential velocity profile at the draft-tube inlet [22, 23]. Therefore, this velocity component at the runner outlet reference line 
has been determined to be similar to a targeted profile within a safe bound, which is based on designers’ experiences.  
• Blade loading: one constraint prevents negative blade loading on all blade sections. 
• Cavitation: one constraint has been defined to limit the minimum allowed pressure for all blade sections, in order to 
represent cavitation issues during the optimization. 

3.2 Initial Geometry and Design Variables 
A low-head Francis turbine runner has been chosen. The goal is to design a runner such that on a given efficiency curve (speed 

coefficient Ned equal to 0.407) it provides the peak position at a given flow coefficient Ped equal to 0.294. This turbine contains 13 
runner blades and 20 guide vanes. The initial geometry is a poor hydraulic blade shape. 
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Figure 3(a) shows blade edges and runner inner/outer contours, projected in the meridional plane. The tangential velocity 
reference line has been shown as well. Figure 3(b) illustrates the simple geometry of the initial blade. Figure 3(c) shows the 
aggregated fluid flow domain considered in the computational analyses. Inlet and outlet boundaries are illustrated on the top and 
bottom of the blade respectively. Figure 3(d) illustrates the whole runner considering rotational periodicity of the flow domain. 
The blade thickness has been created using a NACA blade thickness profile (see Fig. 4). 

   
 

(a) (b) (c) (d) 
Fig. 3 Initial blade geometry, single-blade and runner flow computational domain 

 
 

 
 

Fig. 4 Blade thickness profile 
 

Blade geometries are parameterized through an in-house software developed by Andritz Hydro Canada Inc. [24]. The software 
allows changing the number of parameters representing the geometry, modifying each of them, and visualizing the geometrical 
model.  

Table 1 shows the main geometric parameters and design variables. Curvature of the blade is governed by some angle control 
points along streamline sections from the leading edge to the trailing edge. The lean of the leading edge is represented by other 
angle points on a 2D projected curve from band to crown. Blade length is defined by the camber line length in each section. The 
band-side contour is optimized using cylindrical coordinates (i.e. r and z) of two points located downstream of the leading edge on 
the band. Proper bounds of variations are defined for each four types of design variables, based on some geometric limits and/or 
designer experiences. 

 
Table 1 Number of independent parameters & design variables 

Initial model 
parameters 

Optimization  
design variables 

Blade curvature 9 9 

Blade length 11 3 
Blade leading edge 11 1 
Band contour 20 4 
Crown contour 43 Fixed 
Blade thickness 80 Fixed 
Number of blades 13 Fixed 

 

3.3 Optimization Features 
A maximum number of 40,000 low-fidelity evaluations have been set for both optimizers. Also, the same problem 

formulations has been used for both optimizers. 
Although only one objective is used for the problem at hand, it should be noted that both optimizers are able to handle multi-

objective optimization problems. For instance, we presented the results of a bi-objective low-fidelity optimization employed in the 
developed multi-fidelity methodology [17]. Also, EASY has demonstrated its success to handle a multi-objective Francis runner 
optimization problem [14]. 

3.3.1 NOMAD 
Since NOMAD is a mesh adaptive method, it will stop when reaching the mesh convergence criterion even if the maximum 

number of evaluations is not used. NOMAD needs an initial design vector to start exploring the design space. Our previous 
investigations have indicated that in blade shape optimization problems, NOMAD performance and optimization results are quite 
sensitive to the initial design vector. In order to alleviate this drawback, a Latin Hypercube (LH) method has been used with 1% of 
the maximum computational budget, to evaluate 400 new design points at the beginning, and select the best one to obtain the most 
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promising initial vector. 
Another important NOMAD aspect is the assignment of global search budget, which has been investigated in this study as well. 

Although the MADS algorithm is quite powerful in local search, it needs some special considerations to be successful in global 
search too. Variable Neighborhood Search (VNS) is an algorithm integrated into NOMAD to improve global search of the design 
space [25]. While the default value of VNS budget is equal to 75% of overall budget, two more global search budgets have been 
also investigated using VNS equal to 85% and 95% of the overall budget. The importance of global search is intensified in the 
problem at hand while the blade performance is strongly sensitive to small design variable changes.    

All the constraints are considered as relaxable using the Progressive Barrier (PB) approach of NOMAD. With this approach, 
the MADS algorithm identifies new incumbent solutions by considering feasible points with the lowest objective values that 
improve feasibility. Optimization improvement is determined based on filter method of Fletcher and Leyffer [26]. 

3.3.2 EASY 
A considerable number of evolutionary algorithm parameters have to be taken in to consideration in EASY. However, most of 

them have well-tuned default values. Based on previous investigations, the length of chromosomes (strings of binary digits 
representing values of design variables) and the population size (number of offspring generated in each iteration of evolutionary 
algorithm) have been chosen to be studied. Mutation- and cross recombination probabilities have been set to 0.02 and 0.9 
respectively. Before each new geometry evaluation, EASY checks the database containing previous evaluated geometries to 
prevent repeating the same evaluation.   

The evolutionary algorithms employed in EASY uses penalty functions to enforce constraints. For the problem at hand, proper 
constraint weights have been investigated and determined based on the ranges of infeasible constraints- and objective values. 

4. Results and Discussions 
For the problem at hand with the selected bounds of design variables, the lowest possible objective value is 1. Table 2 shows 

the results of the optimization problem defined in the last section using NOMAD and EASY. Feasible solutions are selected in the 
first step of the filtering process. As it was expected, EASY has achieved much larger numbers of feasible solutions due to its 
exceptional global search capacity. However, generally NOMAD is more capable in local search since it almost always has 
obtained the best possible objective value faster. 

 
Table 2 NOMAD- and EASY-based optimization performances 

No. of 
Eval. 

No. of feasible 
solutions  

First feasible 
solution  

Obj. value 
of the first 
feasible  

Best Obj. 
value 

NOMAD 

VNS 0.75 
X0 25679 0 - - - 
LH 15945 1460 (9.2%) 7981 1.04 1.00 

VNS 0.85 
X0 37754 4175 (11.1%) 27191 1.14 1.00 
LH 27699 2494 (9.0%) 19039 1.07 1.00 

VNS 0.95 
X0 40,000 1163 (2.9%) 5063 1.43 1.28 
LH 40,000 1412 (3.5%) 9176 1.09 1.00 

EASY 

P 50 

L 5 40,000 25558 (63.9%) 1839 1.23 1.01 
L 10 40,000 25789 (64.4%) 1512 1.22 1.00 
L 15 40,000 10997 (27.5%) 2007 1.20 1.10 
L 20 40,000 23698 (59.2%) 1587 1.22 1.00 

P 30 L 10 40,000 0 - - - 
P 40 L 10 40,000 0 - - - 
P 60 L 10 40,000 15246 (38.1%) 8984 1.25 1.20 
P 70 L 10 40,000 0 - - - 

   
Six NOMAD optimization results indicate LH search at the beginning of the optimization is really helpful, especially in lower 

VNS budgets. For instance, while using an initial design vector (i.e. X0) has led to no feasible solution, using LH to find a 
relatively good initial vector has improved extensively the performance and allowed achieving 1460 feasible solutions in 38% 
fewer number of evaluations (due to NOMAD mesh convergence stopping criterion). In this optimization the objective value of 
the first feasible solution was quite good which caused reaching the best possible objective value very quickly. The 
aforementioned point has been well demonstrated in Fig. 5. The bigger the VNS budget assigned, the more chance of globally 
exploring the design space and getting away from the local minima in order to find other good solutions. Disconnected curves in 
Fig. 5 (e.g. dedicated as VNS 0.95_LH) indicates that point, since each of those disconnections shows the VNS effect by stopping 
local search and jumping out of the previous search regions, which usually causes starting from new infeasible regions. This 
figure also indicates that NOMAD is really sensitive to the initial design vector and confirms the necessity of LH usage. For 
instance, using the highest VNS budget (i.e. 0.95) without LH, could not improve the relatively big objective value of the first 
feasible solutions. Although in this optimization the first feasible solution was obtained quite fast (at the 5063rd evaluation), 
completing all 40,000 evaluations did not lead to a better objective value than 1.28. Among NOMAD optimizations, VNS 
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0.85_LH has been chosen for further investigation since it has explored the design space with a medium global search budget with 
a relatively low number of evaluations due to quick local search convergence. 

EASY optimization results indicate that it is really sensitive to the studied parameters, especially to the size of population. 
Thus, it should be carefully calibrated at the beginning. The best possible objective value has been achieved only by using the 
population of 50. No feasible solution has been obtained using population sizes of 30, 40 and 70. The results also indicate that 
among different chromosome lengths, lengths of 10 and 20 have resulted in the best objective value. A larger number of feasible 
solutions and a better convergence are achieved using length of 10 (see Fig 6). Therefore, it was selected for the investigation of 
population size effect. Also, the case with population size of 50 and length of 10 (called P50_ L10) has been chosen for further 
investigation. 

 

 
Fig. 5 Objective value improvement of feasible solutions obtained by NOMAD using different VNS budgets 

 
 

 
Fig. 6 Objective value improvement of feasible solutions obtained by EASY using different population sizes and chromosomes 

lengths 
 

Global search capability of EASY can be illustrated by investigating the distribution of feasible solutions in the design space. 
For instance, Fig. 7 shows that distribution for two selected optimization results of NOMAD (VNS 0.85_LH) and EASY 
(P50_L10) from six design variable points of view. In all of them, EASY has covered significantly larger feasible regions. It is 
really important from the filtering point of view, since the main task of the filtering unit (see Fig. 2) is selecting a certain number 
of promising candidates while they are geometrically as different as possible. Figure 7 indicates that among the presented design 
variables, there is a big concentration of feasible solutions on the lower bounds of length design variables; thus, optimization 
improvement may be reached by decreasing those lower bounds. It was expected in advance since the objective function has been 
formulated as a summation of weighted length variables. However, as it was mentioned earlier, the lower bounds of length 
variables has been defined by experienced designers due to other design considerations, and consequently cannot be changed. 

Figure 8 illustrates comparison of two selected optimization results with filtered candidates. As a good local optimizer, 
NOMAD converges quickly down to the best objective value once it achieves the first feasible solutions, although this 
achievement happens relatively late. However, EASY as a good global optimizer obtains a much larger number of feasible 
solutions from very earlier evaluations, but it improves the objective value gradually within some major recognizable steps.  

Four promising candidates were chosen by the filtering unit for each of those two optimizations to be sent to high-fidelity 
phase. Table 3 shows the results of High-fidelity Navier-Stokes analyses of the selected candidates. It indicates that the 21988th 
solution of NOMAD optimization is the best selected candidate, which has the improved efficiency curve peak at the targeted 
power coefficient within the allowed error range (±1% error for the problem at hand), while it has no cavitating area. If none of 
those candidates has the peak position within the range, the candidate with the best efficiency (e.g. 22705) may be chosen to be 
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used as the new initial geometry for the next optimization step with corrected operating conditions. However, different selection 
policies may be applied for different situations.      

 
 

   

Fig. 7 Comparison of feasible solution distributions in the design space. 
 
 

 
Fig. 8 Objective value improvement of feasible solutions obtained by the best NOMAD- and EASY optimizations 

 
Table 3 High-fidelity evaluation results of filtered candidates 

Evaluation 
number 

Efficiency 
improvement (%)  

Peak position 
deviation (%)  

Cavitation 
existence 

NOMAD 

20139 2.5 -1.6 No 
21988 2.4 -0.7 No 
22705 3.3 -2.1 No 
26587 1.8 0.1 Yes 

EASY 

27001 2.4 -1.5 No 
30989 2.1 -1.8 No 
37356 1.9 -0.9 Yes 
39686 2.3 -1.0 No 
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Fig. 9 Efficiency improvement of the optimized blade versus normalized power coefficient 

 
The optimized blade is much shorter with a complex pattern of blade curvature. According to Fig. 9, using length objective 

with three well-defined constraints has led to considerable efficiency enhancement (2.4%) at the right operating condition. In this 
figure, efficiency improvement has been calculated from the peak efficiency of the base geometry. Comparison of Fig. 10 and 11 
shows the improvement of low-fidelity pressure curves along the blade to satisfy the pressure constraint on the targeted operating 
condition. Pressure coefficients have been normalized with the minimum and the maximum coefficients of the optimized blade. 
These pressure curves are relatively consistent with high-fidelity results. The proper arrangement of pressure curves along the 
optimized blade sections has led to an appropriate blade loading and negative load prevention. Satisfaction of tangential velocity 
constraint has significantly improved the tangential velocity profile at the runner outlet on the targeted operating condition, which 
plays an important role to minimize energy losses and to maximize the efficiency (see Fig. 12). 

 

 
Fig. 10 Normalized pressure coefficient along the initial blade sections 

 
 

 
Fig. 11 Normalized pressure coefficient along the optimized blade sections 
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Fig. 12 Tangential velocity improvement at the runner outlet; left: base geometry, right: optimized geometry 
 

The results indicate that no more design step is needed, since: 
• All defined constraints have been satisfied in the first step. 
• No relaxed constraint has been used in the optimization; so there is no need to increase the number of design variables 
to achieve feasibility of real constraints. 
• High-fidelity evaluations have indicated that the main optimization target (i.e. right peak position) has been achieved 
properly, with a good efficiency. Therefore, no target correction is needed. 
However, if there was a significant deviation from the targeted peak position, the operating condition used in the low-fidelity 

optimization constraints should be corrected in the next optimization step. We applied two linear corrections previously in 
optimizing a medium high-head Francis runner within three optimization overall loops [17]. Also, off-design operating points can 
be considered by adding new constraints and/or objectives dedicated to those operating conditions such as [21]. 

The optimized blade may be employed by designers as a good starting point to do very fine tunings in order to obtain other 
characteristics of a desired design. This final design step cannot be carried out within the optimization mainly due to the necessity 
of using a lot of geometrical parameters. 

5. Conclusion 
A robust multi-fidelity design optimization methodology has been developed to integrate advantages of high- and low-fidelity 

analyses, aiming to help designers to reach efficient turbine runners in reasonable computational time and cost. In the low-fidelity 
phase the automatic optimization loop is in charge of providing a lot of solutions using fast low-fidelity inviscid flow evaluations 
as a physic-based surrogate model. Considering important challenges of the design environment (such as non-linear non-convex 
design spaces), NOMAD and EASY have been chosen. NOMAD uses the MADS algorithm, which has demonstrated its power of 
local search in complex industrial applications. EASY employs an evolutionary algorithm, which is quite well-known for its 
global search capability.  

Since the low-fidelity solver used in the optimization is not accurate enough and the efficiency is not directly reachable, a 
filtering unit selects a limited number of geometrically different candidates which are dominant in their own neighborhoods. The 
computationally expensive high-fidelity phase is responsible for evaluating those candidates and choosing the best. These accurate 
results are valuable as well to calibrate low-fidelity optimization by the optimization correction unit.   

The developed methodology demonstrated its advantages by designing a low-head Francis runner through a relatively low 
computational cost. Although the initial geometry was quite poor, all design targets were met in the first optimization step without 
any optimization tuning. The design targets were relatively simplified and only associated to the peak operating point. In the case 
of using more complicated targets with more design points, it is expected to use more optimization steps, corrected by high-
fidelity results.    

NOMAD and EASY optimization results indicate that each of them has its own abilities and drawbacks for the problem at 
hand, which come from the algorithms each of the optimizers employ. It may be concluded that for such a complex optimization 
problem, combining those two optimization algorithms can bring more optimization efficiency, while alleviates their 
disadvantages. While NOMAD, even assisted with LH, could not obtain the feasibility up to around 10,000 evaluations (25% of 
the maximum evaluation budget), EASY always achieves very big percentages of feasible solutions, without difficulty from about 
1000 evaluations to the end of optimization. Therefore, it is a good candidate to apply for the first round of low-fidelity 
optimization, in order to have a wide global search of the design space within a couple of thousands evaluations. In the second 
round, NOMAD will gain from those promising feasible solutions obtained by EASY for deep local searches. NOMAD has 
proved its high performance to do the aforementioned task within a very few evaluations. By applying this new methodology, it is 
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possible to cut significant computational cost and time, and achieve better optimized blade as a result of a better design space 
exploration. 
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