• Title/Summary/Keyword: Rubber traction

Search Result 27, Processing Time 0.026 seconds

The Treatment for Mandibular Condyle Fracture of Children by a Threaded Kirshcner Wire and External Rubber Traction (Threaded Kirschner Wire와 외부 고무줄 견인을 통한 소아 하악골 관절돌기 골절의 치료)

  • Nam, Doo Hyun;Kwon, Ino;Ahn, Hyung Sik;Kim, Jun Hyuk;Lee, Young Man
    • Archives of Plastic Surgery
    • /
    • v.36 no.2
    • /
    • pp.221-224
    • /
    • 2009
  • Purpose: The treatment of children mandibular condyle fracture that is severely displaced is controversial. The conservative treatment of it may lead to complications - mandibular deficiency, asymmetry, malocclusion and temporomandibular joint dysfunction. Moreover, open reduction carries risks for growth retardation, facial nerve injury, scarring and joint stiffness. The aim of this article is to present an alternative technique of the treatment by using a threaded Kirschner wire and external rubber traction. Materials: From November 2005 to May 2008, three patients underwent the management by using a threaded Kirschner wire and external rubber traction. A threaded Kirschner wire was inserted in the condylar segment by using a C-arm. We applied the external rubber traction, and we reducted the segment progressively until complete reduction. The mandibular - maxillary fixations were removed after 3 weeks, and patients went into training for mouth opening. Results: The technique didn't result in complications - joint dysfunction, facial nerve injury, sore, infection and nonunion during follow - up period. Radiologic follow - up examinations revealed correct reduction in all patients. In all cases, we found restoration of preinjury occlusion and temporomandibular joint function. Conclusions: Closed reduction of children mandibular condyle fracture by using a threaded Kirschner wire and external rubber traction did achieve anatomic reduction and restore mandibular height. This alternative technique is simple, effective, inexpensive, easy to apply and minimally invasive.

The Development of Outsole for Wet Traction Enhancement (습윤 접지력 향상을 위한 안전화 겉창 개발 연구)

  • Kim, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • Many occupational workers or professionals have to walk on the various floors for a long period of time. The objective of this study was to develop the safety shoes with increased traction through the material selection. In order to fulfill our objective, first, two kinds of filler were selected to compare the wear mechanism at outsole surface. The developed rubber materials were tested with two kinds of portable slip meters. The sample safety shoes with developed rubber materials were also tested with subject in the laboratory. During walking, the safety shoes were naturally abraded with counter surface. The coefficient of friction(COF) was gradually decreased with number of steps to 30,000, while the COF was abruptly increased from 30,000 to 40,000. The experimental results showed that COF tested with silica rubber was at least 10% higher than that with carbon black rubber in wet or detergent condition. It has been well recognized that filler properties play a important role in wet traction in the tire industry. However it has been unclear that filler properties would be decisive factor in safety shoes. Our study shows that silica exhibits a higher slip resistance than carbon black without reference to wear states in wet or detergent condition. So, this results will provide guides for outsole compounders to develop new products and improve product performance.

An Experimental Study on Traction System of Rubber Tired AGT (고무차륜 경량전철 추진장치 시험)

  • 이병송;정락교;조홍식;정상기;김진선
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.580-584
    • /
    • 2002
  • This paper proposes an experimental study on the traction system of rubber tired AGT (Automated Guideway Transit). IGBT VVVF inverter is developed for 1C2M propulsion system of AGT, and it consists of inverter stack, gate control unit, control unit, and interface unit. The combination test was carried out to prove the performance of inverter, and test results show that the developed inverter is excellent.

  • PDF

The Basic Design of Rubber tire AGT Considering Running Condition (주행조건을 고려한 고무차륜 경량전철의 기본설계)

  • 이은규;김상용;한석윤
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.271-281
    • /
    • 2000
  • A number of variables and environment are concerned for the basic design of train. The design of train ran be optimized by the ruining simulation. And using the simulation result the consuming energy, regenerating power, adhesion coefficient, train traction control capacity are respectable. Considering these variables and for more information operating time, operating period, standard velocity and limit speed, the all factors of train are optimized. The light-tail tram is mainly divided into linear motor train, road surface train, iron wheel train and rubber tire train, and the most profitable one for adhesion coefficient is rubber tire train and the train will be designed.

  • PDF

Prediction of Wear Rate for Rubber Track by Using Frictional Energy Analysis (마찰 에너지 해석을 통한 러버 트랙(Rubber Track)의 마모율 예측)

  • Kang, Jong-Jin;Cho, Jin-Rae;Jeong, Weui-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.125-133
    • /
    • 2011
  • The wear of rubber track being in contact with the road surface is an important subject because it decreases the traction performance and the operating efficiency of tracked vehicle. For the above reasons, many attempts have been made to quantitatively calculate the rubber track. However, it depends on the experimental methods which are highly time- and cost-consuming. Therefore, the numerical simulation approach is highly desirable, but it needs to model the complex geometry and the material behavior in details as well as the interaction with the road surface. In this study, the rubber track and its material behavior are elaborately modeled since these factors are very important in the prediction of the wear rate of the rubber track. Accordingly to the studies on the rubber wear by previous investigations, it has been found that the wear is greatly influenced by the frictional energy. The frictional energy of rubber track is computed by utilizing the 3D finite element analysis of the rubber track, and the wear rate is evaluated making use of the frictional energy and a wear model.

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Effect of Vinyl Group Content of the Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of Silica Filled Rubber Compounds

  • Kim, Donghyuk;Ahn, Byungkyu;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.152-163
    • /
    • 2021
  • Liquid butadiene rubber (LqBR) is used as a processing aid and plays a vital role in the manufacture of high-performance tire tread compounds. In this study, center-functionalized LqBR (C-LqBR) was polymerized with different vinyl content via anionic polymerization. The effects of the vinyl content on the properties of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with C-LqBR in silica-filled rubber compounds. C-LqBR compounds showed a low Payne effect and Mooney viscosity regardless of the vinyl content, because of improved silica dispersion due to the ethoxysilyl group. As the vinyl content of C-LqBR increased, the optimum cure time (t90) increased owing to a decrease in the number of allylic hydrogen. Moreover, the glass transition temperature (Tg) of the compound increased, and snow traction and abrasion resistance performance decreased, whereas wet grip improved. The energy loss characteristics revealed that the hysteresis attributed to the free chain ends of C-LqBR was dominant.

The Effects of Liquid Butadiene Rubber and Resins as Processing Aids on the Physical Properties of SSBR/Silica Compounds

  • Iz, Muhammet;Kim, Donghyuk;Hwang, Kiwon;Kim, Woong;Ryu, Gyeongchan;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • Highly aromatic (HA) oils are common processing aids used in tire tread compounds. However, they often bleed and evaporate from the vulcanizates during tire use. Thus, the mechanical and dynamical properties of the tire decrease. To overcome this problem, we investigated nonfunctionalized liquid butadiene rubber (LBR-305, Kuraray) and center-functionalized liquid butadiene rubber (C-LqBR), polymerized by anionic polymerization. In addition to the liquid butadiene rubbers, p-tert-octylphenol (P-Resin) and C5 hydrocarbon (H-Resin) tackifier resins, which can induce entanglement of rubber compounds, were researched as a processing aid to solve the bleeding problem. Liquid butadiene rubbers have significantly reduced extraction loss by crosslinking with the main rubber chain. They have also increased the abrasion resistance and showed similar or better mechanical and dynamical properties against HA oils. However, resin compounds did not show differences in extraction loss compared to HA oil compounds; instead, they showed increased wet traction.

New Overmodulation strategy for Propulsion system of the Light Rail Transit (경량전철용 추진제어장치의 새로운 과변조 기법)

  • Lee, Eun-Kyu;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.194-199
    • /
    • 2003
  • The traction drive system for the urban transit Rubber-tire system is described in this paper. To control the magnitude and frequency of the output voltage of induction motor transiently, the vector control strategy is generally used. But in case of the traction drive system for the railway vehicle, it is difficult to use the vector control caused by the one-pulse mode in the high speed region. Therefore, this paper proposes the control strategy combined the vector control in the low speed region and the slip frequency control in the high speed region. And also, the overmodulation PWM method is discussed to make the change to the one-pulse mode softly. The performance of the Proposed traction drive system is verified by the MATLAB simulation results.

  • PDF

Computer Simulation of Rubber Flow for Mold Profile in Rubber Shaping Process (고무 성형 공정에서 금형 형상에 따른 고무 흐름의 컴퓨터 모사)

  • Lee, Dan Bi;Lee, Min A;Choi, Sung Hyun;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.220-224
    • /
    • 2014
  • The tire tread is contacted with road surface directly. It gives significant effect on the breaking conditions, traction, noise and so on. The tread having grooves with complex geometry is molded by shaping process. The flow behavior of tread rubber in a mold affects the quality of the tread and it leads to the running performance of automobile. In this study, the flow behavior of rubber in shaping process has been investigated by computer simulation. The objective of flow simulation is the design of tread shape based on the contact of rubber on the mold surface and flow behavior of rubber. Different sequences of contact of rubber on the mold surface and flow behavior of rubber are observed according to the shape of tread on the mold surface. It was verified that the shape of tread gives significant effect on the flow behavior of rubber. Different flow behaviors of rubber and sequential contact of rubber to the mold surface were observed according to the shape of tread on the mold surface. Therefore, we have identified that the shape of tread give a change in the flow behavior of rubber.