DOI QR코드

DOI QR Code

The Effects of Liquid Butadiene Rubber and Resins as Processing Aids on the Physical Properties of SSBR/Silica Compounds

  • Iz, Muhammet (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Kim, Donghyuk (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Hwang, Kiwon (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Kim, Woong (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Ryu, Gyeongchan (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Song, Sanghoon (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Kim, Wonho (Department of Polymer Science & Chemical Engineering, Pusan National University)
  • Received : 2020.10.12
  • Accepted : 2020.10.29
  • Published : 2020.12.31

Abstract

Highly aromatic (HA) oils are common processing aids used in tire tread compounds. However, they often bleed and evaporate from the vulcanizates during tire use. Thus, the mechanical and dynamical properties of the tire decrease. To overcome this problem, we investigated nonfunctionalized liquid butadiene rubber (LBR-305, Kuraray) and center-functionalized liquid butadiene rubber (C-LqBR), polymerized by anionic polymerization. In addition to the liquid butadiene rubbers, p-tert-octylphenol (P-Resin) and C5 hydrocarbon (H-Resin) tackifier resins, which can induce entanglement of rubber compounds, were researched as a processing aid to solve the bleeding problem. Liquid butadiene rubbers have significantly reduced extraction loss by crosslinking with the main rubber chain. They have also increased the abrasion resistance and showed similar or better mechanical and dynamical properties against HA oils. However, resin compounds did not show differences in extraction loss compared to HA oil compounds; instead, they showed increased wet traction.

Keywords

References

  1. A. Petchkaew, "Implications of non-carcinogenic pah-free extender oils in natural rubber-based tire compounds" Enschede, University of Twente, (2015).
  2. W. Schnabel, "Polymer degradation, principles and practical applications", Hanser Munchen, 87, 838 (1983).
  3. Li, G. Yang, and J. L. Koenig, "A review of rubber oxidation", Rubber Chem. Technol., 78, 355 (2005). https://doi.org/10.5254/1.3547889
  4. T. Nakazono, A. Ozaki, and A. Matsumoto, "Phase separation and thermal aging behavior of styrene-butadiene rubber vulcanizates using liquid polymers as plasticizers studied by differential scanning calorimetry and dynamic mechanical spectroscopy", J. Appl. Polym. Sci., 120, 434 (2010). https://doi.org/10.1002/app.33165
  5. A. Ahagon, M. Kida, and H. Kaidou, "Aging of tire parts during service. I. Types of aging in heavy-duty tires", Rubber Chem. Technol., 63, 683 (1990). https://doi.org/10.5254/1.3538282
  6. H. Kaidou and A. Asahiro, "Aging of tire parts during service. II. Aging of belt-skim rubbers in passenger tires", Rubber Chem. Technol., 63, 698 (1990). https://doi.org/10.5254/1.3538283
  7. A. Santoso, U. Giese, and R. H. Schuster, "Investigations on initial stage of aging of tire rubbers by chemiluminescence spectroscopy", Rubber Chem. Technol., 80, 762 (2007). https://doi.org/10.5254/1.3539415
  8. K. R. J. Ellwood, J. Baldwin, and D. R. Bauer, "Numerical simulation of thermal oxidation in automotive tires", Rubber Chem. Technol., 79, 249 (2006). https://doi.org/10.5254/1.3547936
  9. J. K. Hirata, S. Kuhawara, B. K. Chapman, and D. Kilian, "Effects of crosslinkable plasticizers", RFP International, 6, 212 (2011).
  10. The Swedish National Chemicals Inspectorate, "HA oil in automotives tyres", KEMI Reports, (2003).
  11. A. Petchkaew, K. Sahakaro, and J. Noordermeer, "Petroleum-based safe process oils in NR, SBR and their blends: study on unfilled compounds part II properties", Kautsch. Gummi Kunstst., 66, 21 (2013).
  12. T. Nakazono and A. Matsumoto, "Mechanical properties and thermal aging behavior of styrene-butadiene rubbers vulcanized using liquid diene polymers as the plasticizer", J. Appl. Polym. Sci., 118, 2314 (2010). https://doi.org/10.1002/app.31483
  13. S. Fabien and K. H. Steven, "Silane-terminated liquid poly-(butadienes) in tread formulations: a mechanistic study", Rubber Chem. Technol., (2020). https://doi.org/10.5254/rct.20.80359
  14. D. French, "Functionally terminated butadiene polymers", Rubber Chem. Technol., 42, 71 (1969). https://doi.org/10.5254/1.3539211
  15. Cray Valley, Technical Data Sheet, Ricont 603, (2017), http://www.crayvalley.com/docs/tds/ricon-603-.pdf?sfvrsn¼2.
  16. Evonik, "Less fuel and lower CO2 emissions with POLY-VEST® ST Tires", (2017), https://corporate.evonik.com/en/media/press_releases/Pages/article.aspx?articleId1/4100233.
  17. R. Herpich, Bayer Corp., U.S. Patent 0,082,333 (2002).
  18. H. Takuya, Sumitomo Rubber Ind., J. Patent 2,005,146,115 (2003).
  19. S. Satoyuki, Yokohama Rubber Co. Ltd., J. Patent 2,005,350,603 (2005).
  20. M. T. Arigo, "Using Impera performance resins to expand the magic triangle for tire tread compounds", Rubber World, 25, 260 (2019).
  21. M. Sherriff, R. W. Knibbs, and P. G. Langley, "Mechanism for the action of tackifying resins in pressure-sensitive adhesives", J. Appl. Polym. Sci., 17, 2423 (1973).
  22. D. W. Aubrey and M. Sherriff, "Viscoelasticity of rubber-resin mixtures", J. Polym. Sci., Polym. Chem. Ed., 16, 2631 (1978). https://doi.org/10.1002/pol.1978.170161017
  23. D. W. Aubrey and M. Sherriff, "Peel adhesion and viscoelasticity of rubber-esin blends", J. Polym. Sci., Polym. Chem. Ed., 18, 2597 (1980). https://doi.org/10.1002/pol.1980.170180818
  24. F. W. Barlow, "Rubber Compounding: Principles, Materials, and Techniques", ed. by Marcel Dekker, Inc., p.209, Newyork, (1988).
  25. B. Seo, K. Kim, and H. Lee, "Effect of styrene-butadiene rubber with different macrostructures and functional groups on the dispersion of silica in the compounds", Macromol. Res., 23, 4663 (2015).
  26. A. R. Payne, "The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II", J. Appl. Polym. Sci., 6, 57 (1962). https://doi.org/10.1002/app.1962.070061906
  27. C. G. Robertson, "Flocculation in elastomeric polymers containing nanoparticles: Jamming and the new concept of fictive dynamic strain", Rubber Chem. Technol., 88, 463 (2015). https://doi.org/10.5254/rct.15.85950
  28. W. Thaijaroen, "Effect of tackifiers on mechanical and dynamic properties of carbon-black-filled NR vulcanizates", Polymer Engineering & Science 51, 2465 (2011). https://doi.org/10.1002/pen.22033
  29. G. R. Hamed, "Tack and Green Strength of Elastomeric Materials", Rubber Chem. Technol., 54, 576 (1981). https://doi.org/10.5254/1.3535821
  30. S. Choi, "Improvement of properties of silica-filled natural rubber compounds using polychloroprene", J. Appl. Polym. Sci., 83, 2609 (2002). https://doi.org/10.1002/app.10201
  31. K. Kumar, "Influence of tackifiers and nanoclays on autohesive tack of brominated isobutylene-co-p-methylstyrene elastomer", Diss. IIT Kharagpur, (2010).
  32. J. Lee, N. Park, S. Lim, B. Ahn, W. Kim, H. Moon, H. Paik, and W. Kim, "Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds", Compos. Interface., 24, 711 (2017). https://doi.org/10.1080/09276440.2017.1267524
  33. K. Hwang, H. Mun, and W. Kim, "Effect of Reversible Addition-Fragmentation Transfer Emulsion Styrene Butadiene Rubber (RAFT ESBR) on the Properties of Carbon Black-Filled Compounds", Polymer, 12, 933 (2020). https://doi.org/10.3390/polym12040933
  34. J. Lee, B. Ahn, W. Kim, H. Moon, H. Paik, and W. Kim, "The effect of accelerator contents on the vulcanizate structures of SSBR/silica vulcanizates", Compos. Interface., 24, 563 (2017). https://doi.org/10.1080/09276440.2017.1241559
  35. A.F. Halasa, J. Prentis, B. Hsu, and C. Jasiunas, "High vinlyhigy styrene solution SBR", Polymer, 46, 4166 (2005). https://doi.org/10.1016/j.polymer.2005.02.063
  36. S. Maghami, "Silica-Filled Tire Tread Compounds: An Investigation into the Viscoelastic Properties of the Rubber Compounds and Their Relation to Tire Performance", Enschede, University of Twente, (2016).
  37. B. Ahn, N. Park, D. Kim, and W. Kim, "Influence of end-functionalized solution styrene-butadiene rubber on silicafilled vulcanizates with various silica-silane systems", Rubber Chem. Technol., 92, 364 (2019). https://doi.org/10.5254/rct.19.81522
  38. R. Bond and G. F. Morton, "A taylor-made polymer for tyre application", Polymer, 25, 132 (1984). https://doi.org/10.1016/0032-3861(84)90278-7
  39. E. Cichomski, "Influence of Silica-Polymer Bond Microstructure on Tire-Performance Indicators", Kautsch. Gummi Kunstst., 68, 38 (2015).
  40. G. Heinrich, "The dynamics of tire tread compounds and their relationship to wet skid behavior", Phys. Polym Network, 16, 26 (1992).
  41. G. Heinrich and H. B. Dulmer, "Wet skid properties of filled rubbers and the rubber-glass transition", Rubber Chem. Technol., 71, 53 (1998). https://doi.org/10.5254/1.3538471
  42. F. Shingo, "Analysis of ice and snow traction of tread material", Rubber Chem. Technol., 69, 648 (1996) https://doi.org/10.5254/1.3538392