• Title/Summary/Keyword: Rotor side converter

Search Result 36, Processing Time 0.031 seconds

Application of Fuzzy PI Control Algorithm as Stator Power Controller of a Double-Fed Induction Machine in Wind Power Generation Systems

  • Chung, Gyo-Bum;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2009
  • This paper addresses the output control of a utility-connected double-fed induction machine (DFIM) for wind power generation systems (WPGS). DFIM has a back-to-back converter to control outputs of DFIM driven by the wind turbine for WPGS. To supply commercially the power of WPGS to the grid without any problems related to power quality, the real and reactive powers (PQ) at the stator side of DFIM are strictly controlled at the required level, which in this paper is realized with the Fuzzy PI controller based on the field orientation control. For the Sinusoidal Pulse Width Modulation (SPWM) converter connected to the rotor side of DFIG to maintain the controllability of PQ at the state side of DFIM, the DC voltage of the DC link capacitor is also controlled at a certain level with the conventional Proportion-Integral (PI) controller of the real power. In addition, the power quality at the grid connected to the rotor side of DFIM through the back-to-back converter is maintained in a certain level with a PI controller of the reactive power. The controllers for the PQ at the stator side of DFIM, the DC link voltage of the back-to-back inverter and the reactive power at the grid connected to the rotor side of DFIM are designed and simulated in the PSIM program, of which the result verifies the performance of the proposed controllers.

Implementation of Fuzzy Controller for Rotor Side Converter of DFIG

  • Sastrowijoyo, Fajar;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.131-132
    • /
    • 2012
  • Implementation of fuzzy controller for the rotor side converter of a utility-connected double-fed induction generator (DFIG) for wind power generation systems (WPGS) described in this paper. In the control schemes, real and reactive powers (PQ) at the stator side of DFIG are strictly controlled to supply the power to the grid. A TMS320VC33 DSP is selected as the controller of this system.

  • PDF

Use of Stored Energy in Rotor Inertia for LVRT of PMSG Wind turbine based on Sliding Mode Control (영구자석 동기발전기 시스템을 위한 회전자 관성에너지를 이용한 Sliding Mode제어 기반 LVRT 제어)

  • Jeong, Daeheon;Gui, Yonghao;Kim, Chunghun;Chung, Chung Choo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1058-1059
    • /
    • 2015
  • This paper describes a low-voltage ride-through method for the permanent magnet synchronous generator (PMSG) wind turbine system at a grid fault. The generator side converter regulates the DC link voltage instead of the grid side converter by storing the surplus active power in the rotor inertia during grid fault by the sliding mode controller. The grid side converter controls the grid active power keeping a maximum power point tracking. Simulation results for small scale PMSG wind turbine verify the efficiency of the control method.

  • PDF

Control Strategies of Doubly Fed Induction Generator -Based Wind Turbines with Crowbar Activation (Crowbar 운전을 가지는 이중여자유도발전기 풍력발전시스템의 제어전략)

  • Justo, Jackson John;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.706-707
    • /
    • 2011
  • The insertion of the crowbar system in the doubly fed induction generator rotor circuit for a short period of time during grid disturbance enables a more efficient way of limiting transient rotor current and hence protecting the rotor side converter (RSC) and the DC - link capacitor. When crowbar is activated at fault occurrence and clearance time, RSC is blocked while DC -link capacitor and the grid side converter (GSC) can be controlled to provide reactive power support at the PCC and improve the voltage which helps to comply with grid codes. In this paper, control strategies for crowbar system to limit the rotor current during fault is presented with RSC and GSC controllers are modified to control PCC voltage during disturbance to enhance DFIG wind farm to comply with some strict grid codes. Model simulated on MATLAB/Simulink verify the study through simulation results presented.

  • PDF

Grid Connection Algorithm for Doubly-Fed Induction Generator Using Rotor Side PWM Inverter-Converter (회전자측 PWM 인버터-컨버터를 사용한 이중여자 유도형 풍력 발전기의 계통 투입 알고리즘)

  • 정병창;권태화;송승호;김일환
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.528-534
    • /
    • 2003
  • A grid connection algorithm is proposed for the doubly-fed induction generator (DFIG) which is widely adopted in high power variable speed wind turbine. Before the stator of DFIG is connected to grid, rotor-side converter is used to control the induced stator voltage. As a result, the stator transient current is limited below the rate value during the connection by the proposed synchronization of the stator voltage to the grid voltage. A wind power generation simulator using DC motor and wound-rotor induction generator is built and the dynamic characteristics of proposed algorithm is verified experimentally.

The Harmonic Current Mitigation of DFIG under Unbalanced Grid Voltage and Non-linear Load Conditions

  • Thinh, Quach Ngoc;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.83-84
    • /
    • 2011
  • This paper presents an analysis and a novel strategy for a doubly fed induction generator (DFIG) based wind energy conversion system under unbalanced grid voltage and non-linear load conditions. A proportional-resonant (PR) current controller is applied in both grid side converter (GSC) and rotor side converter (RSC). The RSC is controlled to mitigate the stator active power and the rotor current oscillations at double supply frequency under unbalanced grid voltage while the GSC is controlled to mitigate ripples in the dc-link voltage and compensate harmonic components of the network current. Simulation results using Psim simulation program are presented for a 2 MW DFIG to confirm the effectiveness of the proposed control strategy.

  • PDF

Ride-through of DFIG Wind Turbine Systems Using Energy Storage Unit

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.184-185
    • /
    • 2010
  • This paper deals with a ride-through technique of doubly-fed induction generator (DFIG) wind turbine systems using energy storage unit (ESU). By increasing the machine speed, some portion of the turbine power can be stored in the system inertia during grid faults. Also keeping the operation of rotor-side converter (RSC) and grid-side converter (GSC), the rotor current and DC-link voltage can be limited. The effectiveness of the proposed method is verified by simulation results for 2[MW] DFIG wind turbine system.

  • PDF

Control Strategy of Total Output Power Ripple Cancellation for DFIG in MV Wind Power Systems under Unbalanced Grid Conditions

  • Han, Daesu;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.355-356
    • /
    • 2015
  • This paper proposes a control strategy of total output power ripple cancellation for both of Machine-Side Converter (MSC) and Grid-Side Converter (GSC) in a DFIG under unbalanced grid conditions. The proposed control strategy for the MSC is the zero torque ripple control algorithm with an enhanced LVRT capability. The control algorithm for the MSC exhibits reduced torque pulsation in steady-state unbalanced grid conditions. In addition, this control algorithm also minimizes a peak value of rotor current in transient unbalanced grid conditions. The total output power ripple cancellation control algorithm is adopted in the GSC. The total output power ripple cancellation is achieved by nullifying the oscillating component of the total output active and reactive power at the summing point of stator and rotor of DFIG. The proposed control strategy for the GSC reduces the output power oscillation leading to the improved quality of wind farms output.

  • PDF

풍력발전을 위한 이중여자 유도기의 센서리스 제어

  • 김용현;김일환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.451-458
    • /
    • 2000
  • In wind power generating system connected in power grid, the value of stator flux has almost constant because the stator side of doubly fed induction machine(DFIM) is connected to power grid. Using the stator and rotor current, it is possible to estimate the slip angle and rotor speed. A stator flux orientation scheme and rotor slip estimator are employed to achieve control of generating power in stator side. To verify the theoretical analysis, a 5-hp DFIM prototype system and PWM power converter are built. Results of computer simulation and experiment are presented to support the discussion.

  • PDF

Variable Gain Current Controller Considering Inductance Variations after the Connection of DFIG Stator to the Grid (DFIG 고정자의 계통연계시 인덕턴스 변동을 고려한 가변이득 전류제어기)

  • Shin, Soo-Cheol;Yu, Jae-Sung;Hong, Jung-Ki;Suh, In-Young;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • This paper presents a variable gain current control algorithm for the stabilized grid connection between the grid and a doubly fed induction(DFIG) as a wind power generator. The performance of a RSC current controller depends highly on accurate machine parameters, and especially requires a fast and robust response regardless of the disturbances such as voltage sag. However, parameter variations of a DFIG occur at the point of grid connection, which affects the current controller gains based on DFIG parameters after a DFIG is connected to the grid. Thus, performance degrades when actual machine parameters depart from values used in the control system. In the proposed algorithm, current controller gains of the rotor side converter(RSC) are changed after a DFIG is connected to the grid. The simulation results and experimental results for a 750kW are shown to illustrate the feasibility of the proposed algorithm.