• Title/Summary/Keyword: Rotor Bearing System

Search Result 420, Processing Time 0.023 seconds

Coordinated Control of DFIG System based on Repetitive Control Strategy under Generalized Harmonic Grid Voltages

  • Nian, Heng;Cheng, Chenwen;Song, Yipeng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.733-743
    • /
    • 2017
  • This paper develops a coordinated control strategy of the doubly fed induction generator (DFIG) system based on repetitive control (RC) under generalized harmonic grid voltage conditions. The proposed RC strategy in the rotor side converter (RSC) is capable of ensuring smooth DFIG electromagnetic torque that will enable the possible safe functioning of the mechanical components, such as gear box and bearing. Moreover, the proposed RC strategy in the grid side converter (GSC) aims to achieve sinusoidal overall currents of the DFIG system injected into the network to guarantee satisfactory power quality. The dc-link voltage fluctuation under the proposed control target is theoretically analyzed. Influence of limited converter capacity on the controllable area has also been studied. A laboratory test platform has been constructed, and the experimental results validate the availability of the proposed RC strategy for the DFIG system under generalized harmonic grid voltage conditions.

System Modeling and Robust Control of an AMB Spindle : Part I Modeling and Validation for Robust Control

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1844-1854
    • /
    • 2003
  • This paper discusses details of modeling and robust control of an AMB (active magnetic bearing) spindle, and part I presents a modeling and validation process of the AMB spindle. There are many components in AMB spindle : electromagnetic actuator, sensor, rotor, power amplifier and digital controller. If each component is carefully modeled and evaluated, the components have tight structured uncertainty bounds and achievable performance of the system increases. However, since some unknown dynamics may exist and the augmented plant could show some discrepancy with the real plant, the validation of the augmented plant is needed through measuring overall frequency responses of the actual plant. In addition, it is necessary to combine several components and identify them with a reduced order model. First, all components of the AMB spindle are carefully modeled and identified based on experimental data, which also render valuable information in quantifying structured uncertainties. Since sensors, power amplifiers and discretization dynamics can be considered as time delay components, such dynamics are combined and identified with a reduced order. Then, frequency responses of the open-loop plant are measured through closed-loop experiments to validate the augmented plant. The whole modeling process gives an accurate nominal model of a low order for the robust control design.

The Rotordynamic Analysis of TurboPump System for 9.5ton thrust Liquid Rocket Engine (9.5톤급 액체추진엔진용 터보펌프 시스템의 로터다이나믹 해석)

  • 양홍준;김경호;김영수;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.15-18
    • /
    • 2001
  • In this paper, we investigate the rotordynamic characteristics of turbopump system for 9.5ton thrust liquid rocket engine. A finite element method is used to analyze the vibratior characteristics of a rotor-bearing system. The turbopump rotating system is modeled by shaft with sixty elements, nine rigid disks, four ball bearings and four floating ring seals. The calculation results show that the margin of 1st critical speed is increased from 12% to 68% by use of elastic damping ring. In addition, the margin of the 2nd critical speed near the operating speed is increased from 30% to 63% by the stiffness and damping of floating ring seals.

  • PDF

Development of Online Monitoring System for Induction Motors (유도전동기 온라인 감시진단 시스템 개발)

  • Kim, Ki-Bum;Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Jung, Tea-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.23-30
    • /
    • 2014
  • This paper presents an on-line diagnosis system for identifying health and faulted conditions in squirrel-cage induction motors using stator current, temperature, and partial discharge signals. The proposed diagnosis system can diagnose induction motor faults such as broken rotor bars, air-gap eccentricities, stator winding insulations, and bearing faults. Experimental results obtained from induction motors show that the proposed system is capable of detecting induction motor faults.

A Study on the Vibration of Rotordynamic System Structured Rotor-Bearing and Rotor-Bearing-Stator (로터-베어링/로터-베어링-스테이터로 구성된 회전체 진동에 관한 연구)

  • 주성현;김광식;김창호;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.173-178
    • /
    • 1990
  • 로터-베어링축계는 증기및 가스터빈, 터보 발전기, 압축기등 거의 모든 산업 기계류에서 동력 전달의 기본 도구로써 사용되고 있다. 즉 회전에 의한 동력 의전달은 비교적 간단히 대용량의 동력을 효율적으로 전달할 수 있다. 이에 따라 회전기계류에 대한 연구는 산업 혁명 이후 꾸준히 발전되어 온바, 특히 근래에 들어와 산업기계류의 경쟁이 치열하여짐에 따라 산업기계류의 고정 밀화, 고속화, 고신뢰화 요구가 증대하고 있는 현실을 비추어 볼때, 산업 기 계류의 근간을 이루고 있는 로터-베어링 축계의 안정성을 포함한 진동에 관 한 문제는 회전기계류 설계의 주요 기술로써 연구.개발의 필요성이 매우 높 다 하겠다. 회전축계 진동 관련 연구는 두 분야로 대별될 수 있는데 언밸런 스(Unbalance)에 의한 Synchronous진동과 여러가지 원인에 의해 계의 불안 정성을 유발시키는 Nonsynchronous진동으로 나눌 수 있다. 본 연구에서는 이들 연구의 기본이 되는 회전축-베어링계 동특성 해석 프로그램을 개발하 였다. 여러가지 방법이 있으나 여기서는 Holzer가 비틀림 진동에 적용하고, Mykiestad(2)와 Prohl(3)에 의하여 회전축의 횡 진동에 적용된 이후 Lund(4) 등에 의하여 베어링의 영향등이 첨가된 전달 매트릭스 (Transfer Matrix) 방 법을 이용하여 임계속도(Critical Speed), 모우드 형태(Mode shapes)를 예측 하고 불안정 판정(Instability Criteria)등을 할 수 있는 프로그램을 개발하였 다. 특히 Murphy(1)의 다항식 방법(Polynomial Method)에 기본을 두어 기존 의 전달 매트릭스가 가지고 있던 반복, 수렴 시간 문제와 빠뜨리는 임계속도 예측에 대한 개선을 이루었으며 기존 논문과 실험 결과와의 비교 검토를 통 하여 개발된 프로그램의 신뢰성을 검토하였다. 특히, 각종 회전 기계의 소형 화, 경량화 추세에 따라 지반이나 케이싱이 경량이거나 유연하여 회전축과 동적으로 연성된 경우 회전축-베어링-지반으로 이루어진 2중구조의 회전축 계 동특성을 해석할 수 있는 프로그램을 개발하므로서 회전 기계류의 진동 전반에 걸친 문제점에 대한 그 원인과 현상을 명확히 분석하여 국내의 전기 계류의 보다 신뢰성있는 설계 및 제작자료를 확보하는데 기여할 수 있게 하 였다.

  • PDF

Design of Ultra High-Speed Micro-Scale Permanent Magnet Machine for Maximum Output Power Generation (최대 출력을 위한 초소형/초고속 영구자석 동기기의 설계)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young;Park, Ji-Hoon;Kim, Hyun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.80-82
    • /
    • 2008
  • This paper deals with the design of an 870 krpm class high-speed permanent magnet synchronous generator (PMSG) applied to micro turbine system. Since space where the high-speed PMSG coupled with the micro turbine occupies in the system is strictly limited, the work described in this paper is motivated by the desire to make maximum output power of the generator considering the rotor and stator structures, winding methods and bearing system under restricted space.

  • PDF

Identification of joint dynamics of mechanical structures using condensed F.E.M. model and experimental modal analysis (축약된 유한요소 모델과 실험적 모우드 해석을 이용한 기계구조물의 연결부 동특성 규명)

  • 최병욱;박병호;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.426-439
    • /
    • 1988
  • Dynamic properties such as stiffness and damping of mechanical joints are essential for the accurate prediction of the dynamic behaviors of the system and subsequent improvement of the design. So far several techniques, analytical, experimental, or both have been developed. A technique using condensed F.E.M. model and Experimental Modal Analysis is presented to identify the joint structural parameters. First, modal parameters of structure are measured by certain complex frequency obtained from experiment to match with the order of the Experimental Modal Analysis model. Finally by equating the modal parameters obtained from experiment with those of the condensed system, the unknown joint structural parameters can be identified. A simulation study is conducted to investigate the accuracy of technique. The experiments are performed with ball bearings in a rotor bearing system.

Development of Fault-Simulated System for Induction Motors (유도전동기 고장모의 시뮬레이터 개발)

  • Hwang, Don-Ha;Lee, Ki-Chang;Kang, Dong-Sik;Kim, Byong-Kuk;Jo, Won-Young;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.182-184
    • /
    • 2006
  • A down-scaled simulator is developed to simulate typical faults in induction motor such as short-turn stator winding, broken rotor bar, dynamic and static air-gap eccentricity, bearing trouble, and mechanical unbalance. The simulator is used as an initial builder to develop design algorithm for real-time faults detecting system by processing an abnormal signal and characteristics in each fault.

  • PDF

Effect of Seal Wear on the Rotordynamics of a Multistage Turbine Pump (시일의 마멸이 다단 터빈 펌프 동특성에 미치는 영향)

  • 김영철;이동환;이봉주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1015-1023
    • /
    • 1997
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on its system behavior. Stiffness and damping coefficents of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annuler seals are calculated as functions of rotating speed as well as seal clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in vibration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Oil Whirl Effects on Rotor-Bearing System Identifications by Modal Testing

  • Jei, Yang-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.105-110
    • /
    • 1991
  • Oil whirl effects on system identification during modal testings are discussed. When the forward rotating excitations act, the oil whirl effects seriously appear. But when the backward rotating and uni-directional excitations act, and the magnitude of forward excitation is small, oil whirl effect do not appear in forced response function. The results of simulation of oil whirl effects during modal testing are well coincident with those of experiments. With the uni-directional excitation technique the linearized dynamic coefficients of fluid film bearings and seals can be estimated more accurately than with the circular rotating excitation technique. But with the circular excitation technique oil whirl effects can be well investigated.

  • PDF