• Title/Summary/Keyword: Rotational Stiffness

Search Result 383, Processing Time 0.023 seconds

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

An Experimental Study on the Measurement of Radial Directional Natural Frequency in a Passenger Car Tire Roboting under the Load (하중을 받고 회전하는 승용차 타이어의 반경방향 고규진동수 측정에 관한 실험적 연구)

  • Kim, Byoung-Sam;Hong, Dong-Pyo;Chi, Chang-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The measurement of radial directional natural frequency ina passenger car tire rotating under the load is studied. In order to obtain theoretical matural frequency and mode shape, the ploane vibration of a tire is modeled to that of circular beam. By esing the Tieking method based on Hamiltons's principle, theoretical results are determined by considering tension horce due to tire inflation pressure, retational velocity and tangential, radial stiffness. Radial directional modal parameters varying with the inflation pressure, load, rotational velocity are experimentally determined by using frequency response function method. The results show that experimental conditions canbe considered as the parameters which shift the natural frequency.

Three OOP Haptic Simulator for a Needle Biopsy (3자유도 힘반향 장치를 이용한 침생검 햅틱 시뮬레이터)

  • 권동수;경기욱;감홍식;박현욱;나종범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.539-539
    • /
    • 2000
  • This paper shows how to implement force reflection for a needle insertion problem. The target is a needle spine biopsy simulator for tumor inspection by needle insertion. Simulated force is calculated from the relationship of volume graphic data and the orientation and Position of the needle, and it is generated using PHANTOM$^{TM}$. To generate realistic force reflection, the directional force of the needle has been generated by tissue model. The other rotational force is generated using a pivot to keep the needle in the initial inserted direction after puncturing the skin. Since the used haptic device has limitation for generating high stiffness and large damping, scale downed model and digital filter are used to stabilize the system.m.

  • PDF

3-Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System (스핀 코터 시스템의 진동 저감을 위한 3차원 모델링과 민감도 해석)

  • 채호철;류인철;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.209-217
    • /
    • 2003
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system are proposed for the reduction of the vibration. In the respect of modeling, the spin-coater system is considered to be composed of servomotor, spindle, supporting base and so on. Each component of model is combined and derived to 3 dimensional equations. The combined model is verified by experimental values of actual system in the frequency domain. By direct differentiation of the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, rotational stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables are selected from the sensitivity analysis.

A study on the vibration characteristics of pssenger car radial tire (승용차 타이어의 진동 특성에 관한 연구)

  • 김병삼;이태근;양성모;정태진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.76-83
    • /
    • 1993
  • The vibration characteristics of radial tire are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tielking method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure are determined experimentally by using the transfer function method. Results show that material property and wear are parameter for shifting of natural frequency and damping.

  • PDF

Disk Vibration Suppression with Air Bearing Concept (공기 베어링 개념을 이용한 디스크 진동 저감 연구)

  • 최의곤;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.129-137
    • /
    • 2001
  • As the rotational speed and the track density are increased, the vibration of disk/spindle system becomes critical issue. In this work, we propose a simple inclined air bearing(20mm${\times}$20mm) system which is positioned very near to the rotating disk especially compact disc(CD) as a flexible disk, and we investigate suppressing effect about disk mode (0,0) both experimentally and numerically. We find dynamic stiffness and damping coefficients of bearing and apply to the disk vibration. The results show about 10 percent errors comparing to the experimental results. Also we investigate experimentally the reduction of disk vibration and power consumption with two different kinds of inclined bearing for normal disk drive system, which has tray and cover. We find inclined air bearing can decrease about 30 percents of the original disk vibration amplitude.

  • PDF

Heat Generation Model of Angular Contact Ball Bearing with Oil-Air Lubrication

  • Na, Hee-Hyeong;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2000
  • Angular contact ball bearings are mainly used in the spindle, which requires high speed and stiffness. The heat generation is studied by experiments and simulations using a pair of angular contact ball bearings. The temperature variation of inner and outer races and the temperature increment distribution are measured by using thermocouples for the rotational speed, preload, viscosity of lubricant. The measured values from experiments are used to estimate the heat conduction rate. The method of oil-air lubrication is used for the experiment. The amount of conduction heat transfer to the test spindle and the convection heat transfer coefficients long the spindle are computed by using inverse method with temperature increment distribution. Total heat generation rate is estimated with the heat partition rate which is calculated from temperatures of inner and outer races. In addition, the empirical factor of oil-air lubrication method for Palmgren's heat generation model is suggested. The empirical friction coefficients, which are obtained from the experiments, depend on the preload condition, and can give us more accurate estimation of the heat generation in ball bearings.

  • PDF

A Study on the Design of Rubber Mount for Anti-vibration of an Optical Disk Drive Considering the Dimensional Tolerance (치수공차가 고려된 광디스크 드라이브의 방진마운트 설계에 관한 연구)

  • 김국원;김남웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.661-667
    • /
    • 2002
  • With the increase of storage density, high rotational speed and high access technologies in optical disk drive, mechanical issues, mainly noise and vibration, become critical. Up to now the researches of rubber mount for anti-vibration focused on how to calculate the static and the dynamic stiffness of rubber mount and loaned out consideration of the dimensional tolerance of rubber mount for anti-vibration. This paper presents the effects of dimensional tolerance of rubber mount for anti-nitration on the dynamic characteristics of optical disk drive by finite element analysis and dynamic test. The relation between dimensional tolerance and dynamic characteristics of optical disk drive is observed and discussed.

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$, respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$, and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shatter with low frequencies.

  • PDF

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.