DOI QR코드

DOI QR Code

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe (Department of Civil, Environmental, Energy and Materials Engineering, University of Reggio Calabria)
  • Received : 2016.07.22
  • Accepted : 2016.10.05
  • Published : 2016.06.25

Abstract

This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

Keywords

References

  1. Abdel Raheem, S.E. (2014), "Analytical and numerical algorithm for exploring dynamic response of nonclassically damped hybrid structures", Coupled Syst. Mech., 3(2), 171-193. https://doi.org/10.12989/csm.2014.3.2.171
  2. Abu-Hilal, M. (2003), "Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions", J. Sound Vib., 267(2), 191-207. https://doi.org/10.1016/S0022-460X(03)00178-0
  3. Alsaif, K. and Foda, M.A. (2002), "Vibration suppression of a beam structure by intermediate masses and springs", J. Sound Vib., 256(4), 629-645. https://doi.org/10.1006/jsvi.2002.5012
  4. Bambill, D.V. and Rossit, C.A. (2002), "Forced vibrations of a beam elastically restrained against rotation and carrying a spring-mass system", Ocean Eng., 29(6), 605-626. https://doi.org/10.1016/S0029-8018(01)00042-7
  5. Brandt, A. (2011), Noise and Vibration Analysis: Signal Analysis and Experimental Procedures, John Wiley and Sons, Chichester, U.K.
  6. Caddemi, S., Calio, I. and Cannizzaro, F. (2013a), "Closed-form solutions for stepped Timoshenko beams with internal singularities and along-axis external supports", Arch. Appl. Mech., 83(4), 559-577. https://doi.org/10.1007/s00419-012-0704-7
  7. Caddemi, S., Calio, I. and Cannizzaro, F. (2013b), "The influence of multiple cracks on tensile and compressive buckling of shear deformable beams", Int. J. Solids Struct., 50(20-21), 3166-3183. https://doi.org/10.1016/j.ijsolstr.2013.05.023
  8. Caddemi, S., Calio, I. and Cannizzaro, F. (2015), "Influence of an elastic end support on the dynamic stability of Beck's column with multiple weak sections", Int. J. Non-Linear Mech., 69, 14-28. https://doi.org/10.1016/j.ijnonlinmec.2014.10.016
  9. Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, Computers & Structures Inc., Berkeley, CA, USA.
  10. Ding, Z., Li, L., Hu, Y., Li, X. and Deng, W. (2016), "State-space based time integration method for structural systems involving multiple nonviscous damping models", Comput. Struct., 171, 31-45. https://doi.org/10.1016/j.compstruc.2016.04.002
  11. Failla, G. (2014), "On the dynamics of viscoelastic discontinuous beams", Mech. Res. Commun., 60, 52-63. https://doi.org/10.1016/j.mechrescom.2014.06.001
  12. Failla, G. (2016a), "An exact generalised function approach to frequency response analysis of beams and plane frames with the inclusion of viscoelastic damping," J. Sound Vib., 360, 171-202. https://doi.org/10.1016/j.jsv.2015.09.006
  13. Failla, G. (2016b), "Stationary response of beams and frames with fractional dampers via exact frequency response functions", J. Eng. Mech., doi: 10.1061/(ASCE)EM.1943-7889.0001076.
  14. Failla, G. and Santini, A. (2007), "On Euler-Bernoulli discontinuous beam solutions via uniform-beam Green's functions", Int. J. Solids Struct., 44(22), 7666-7687. https://doi.org/10.1016/j.ijsolstr.2007.05.003
  15. Falsone, G. (2002), "The use of generalised functions in the discontinuous beam bending differential equation", Int. J. Eng. Educ., 18(3), 337-343.
  16. Foda, M.A. and Albassam, B.A. (2006), "Vibration confinement in a general beam structure during harmonic excitations", J. Sound Vib., 295(3), 491-517. https://doi.org/10.1016/j.jsv.2005.12.057
  17. Guo, Y.Q. and Chen, W.Q. (2007), "Dynamic analysis of space structures with multiple tuned mass dampers", Eng. Struct., 29(12), 3390-3403. https://doi.org/10.1016/j.engstruct.2007.09.004
  18. Gurgoze, M. and Erol, H. (2002), "On the frequency response function of a damped cantilever simply supported in-span and carrying a tip mass", J. Sound Vib., 255(3), 489-500. https://doi.org/10.1006/jsvi.2001.4118
  19. Hanss, M., Oexl, S. and Gaul, L. (2002), "Identification of a bolted-joint model with fuzzy parameters loaded normal to the contact interface", Mech. Res. Commun., 29(2-3), 177-187. https://doi.org/10.1016/S0093-6413(02)00245-8
  20. Hong, S.W. and Kim, J.W. (1999), "Modal analysis of multi-span Timoshenko beams connected or supported by resilient joints with damping", J. Sound Vib., 227(4), 787-806. https://doi.org/10.1006/jsvi.1999.2385
  21. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F. et al. (1997), "Structural control: Past, present, and future", ASCE J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  22. Kareem, A. and Kline, S. (1995), "Performance of multiple mass dampers under random loading", J. Struct. Eng., 121(2), 348-361. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(348)
  23. Kawashima, S. and Fujimoto, T. (1984), "Vibration analysis of frames with semi-rigid connections", Comput. Struct., 19(1), 85-92. https://doi.org/10.1016/0045-7949(84)90206-2
  24. Keivani, A., Shooshtari, A. and Aftabi Sani, A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
  25. Khiem, N.T. and Lien, T.V. (2002), "The dynamic stiffness matrix method in forced vibration analysis of multiple-cracked beam", J. Sound Vib., 254(3), 541-555. https://doi.org/10.1006/jsvi.2001.4109
  26. Lewandowski, R. and Grzymislawska, J. (2009), "Dynamic analysis of structures with multiple tuned mass dampers", J. Civ. Eng. Manag., 15(1), 77-86. https://doi.org/10.3846/1392-3730.2009.15.77-86
  27. Li, L., Hu, Y. and Wang, X. (2014), "Eliminating the modal truncation problem encountered in frequency responses of viscoelastic systems", J. Sound Vib., 333(4), 1182-1192. https://doi.org/10.1016/j.jsv.2013.10.018
  28. Li, L., Hu, Y., Wang, X. and Lu, L. (2014), "A hybrid expansion method for frequency response functions of non-proportionally damped systems", Mech. Syst. Signal Process., 42(1), 31-41. https://doi.org/10.1016/j.ymssp.2013.07.020
  29. Li, L. and Hu, Y. (2016), "State-space method for viscoelastic systems involving general damping model", AIAA Journal, DOI: 10.2514/1.J054180.
  30. Lin, H.Y. (2008), "Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements", J. Sound Vib., 309(1), 262-275. https://doi.org/10.1016/j.jsv.2007.07.015
  31. Maximov, J.T. (2014), "A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load", Coupled Syst. Mech., 3(3), 247-265. https://doi.org/10.12989/csm.2014.3.3.247
  32. Oliveto, G., Santini, A. and Tripodi, E. (1997), "Complex modal analysis of a flexural vibrating beam with viscous end conditions", J. Sound Vib. 200(3), 327-345. https://doi.org/10.1006/jsvi.1996.0717
  33. Ou, J.P., Long, X. and Li, Q.S. (2007), "Seismic response analysis of structures with velocity-dependent dampers", J. Constr. Steel Res., 63(5), 628-638. https://doi.org/10.1016/j.jcsr.2006.06.034
  34. Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method of estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Struct. Dyn., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
  35. Sarvestan, V., Mirdamadi, H.R., Ghayour, M. and Mokhtari, A. (2015), "Spectral finite element for vibration analysis of cracked viscoelastic Euler-Bernoulli beam subjected to moving load", Acta Mech., 226(12), 4259-4280. https://doi.org/10.1007/s00707-015-1491-3
  36. Sekulovic, M., Salatic, R. and Nefovska M. (2002), "Dynamic analysis of steel frames with flexible connections", Comput. Struct., 80(11), 935-955. https://doi.org/10.1016/S0045-7949(02)00058-5
  37. Shafiei, M. and Khaji, N. (2011), "Analytical solutions for free and forced vibrations of a multiple cracked Timoshenko beam subject to a concentrated moving load", Acta Mech., 221(1-2), 79-97. https://doi.org/10.1007/s00707-011-0495-x
  38. Soong, T.T. and Spencer, B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-thepractice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
  39. Sorrentino, S., Fasana, A. and Marchesiello, S. (2004), "Frequency domain analysis of continuous systems with viscous generalized damping", Shock Vib., 11(3-4), 243-259. https://doi.org/10.1155/2004/359381
  40. Sorrentino, S., Marchesiello, S. and Piombo, B.A.D. (2003), "A new analytical technique for vibration analysis of non-proportionally damped beams", J. Sound Vib., 265(4), 765-782. https://doi.org/10.1016/S0022-460X(02)01560-2
  41. Sorrentino, S., Fasana, A. and Marchesiello, S. (2007), "Analysis of non-homogeneous Timoshenko beams with generalized damping distributions", J. Sound Vib., 304(3), 779-792. https://doi.org/10.1016/j.jsv.2007.03.038
  42. Wang, J. and Qiao, P. (2007), "Vibration of beams with arbitrary discontinuities and boundary conditions", J. Sound Vib., 308(1), 12-27. https://doi.org/10.1016/j.jsv.2007.06.071
  43. Wolfram Research Inc. (2008), Mathematica Version 7.0, Champaign, IL, USA.
  44. Wu, J.S. and Chen, D.W. (2000), "Dynamic analysis of a uniform cantilever beam carrying a number of elastically mounted point masses with dampers," J. Sound Vib., 229(3), 549-578. https://doi.org/10.1006/jsvi.1999.2504
  45. Xu, Y.L. and Zhang, W.S. (2001), "Modal analysis and seismic response of steel frames with connection dampers", Eng. Struct., 23(4), 385-396. https://doi.org/10.1016/S0141-0296(00)00062-6
  46. Xu, H. and Li, W.L. (2008), "Dynamic behavior of multi-span bridges under moving loads with focusing on the effect of the coupling conditions between spans", J. Sound Vib., 312(4), 736-753. https://doi.org/10.1016/j.jsv.2007.11.011
  47. Yavari, A., Sarkani, S. and Moyer, E.T. (2000), "On applications of generalized functions to beam bending problems", Int. J. Solids Struct., 37(40), 5675-5705. https://doi.org/10.1016/S0020-7683(99)00271-1

Cited by

  1. A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models vol.98, 2018, https://doi.org/10.1016/j.ymssp.2017.05.018
  2. Detection of Faults and Vibration Analysis in Beam Structures - A Review vol.13, pp.2, 2021, https://doi.org/10.13111/2066-8201.2021.13.2.8