• Title/Summary/Keyword: Room temperatures

Search Result 1,012, Processing Time 0.026 seconds

Experimental Analysis on the Effect of Grain Size of ZK60 Sheet on the Spring-Back Characteristics (마그네슘합금 ZK 60의 결정립 크기에 따른 스프링백 특성 분석)

  • Kang, S.H.;Kang, H.D.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.398-400
    • /
    • 2008
  • In this work, an air-bending test using magnesium alloy ZK60 sheet was carried out at the various temperatures from room temperature to $300^{\circ}C$ in order to investigate the effect of grain size on the spring-back characteristic. It was found out from experiments that the amount of spring-back was nearly zero at all temperature range when the specimens with grain sizes of 14.66 and $60.71{\mu}m$ were bent by $90^{\circ}$. On the other hand, the spring-back amount dramatically increased at room temperature and phenomenon of spring-go was observed at high temperature when the specimen with submicro grain size of $0.98{\mu}m$ was bent by $90^{\circ}$. From this kind of different spring-back characteristics according to the grain size, it was confirmed that the grain size of material is one of the important factors which have an effect on the spring-back.

  • PDF

Estimation of Indoor Environment using CFD of Multi-Purpose System with a Solar Collector -Part 1, focused on floor area and number of ventilation- (태양열온수기 적용 냉난방시스템의 CFD를 이용한 실내환경 평가 -제1보 바닥면적과 환기횟수를 중심으로-)

  • Kim, Jong-Ryeol;Choi, Kyang-Hyan
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.55-61
    • /
    • 2007
  • This paper has been conducted to estimate cooling capacity of the dehumidification tower using hot water from a solar water heating system as a energy source of regeneration process when the dehumidification and drying system is applied to room cooling. A solar water heating system was operated and indoor temperature distributions were simulated according to weather conditions when the concerned solution was used to dehumidify room air in the dehumidification tower. Through this simulation researches we found th following results ; It was found that air velocity through supply and return diffusers should be controlled because it can cause uncomfort in dwelling area. It was found that in the sunny morning temperatures of dwelling area 1 and 2 are higher than those of dwelling area 3 and 4. In this research all the calculation results of heating and cooling system supported by solar water heater have confirmed that its cooling capacity could not reach PMV 0, thermal comfort.

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

Effects of Seed Size and Temperature on Hypocotyl Elongation in Mungbean (녹두품종별 종실크기 및 온도처리에 따른 하배축 신장성)

  • 이성춘;김동철;임태곤;송동석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.634-639
    • /
    • 1996
  • This experiment was conducted to evaluate the variability of hypocotyl elongation of mungbean varieties. With four mungbean cultivars, which were classified as 4234-697 and Keumsungnogdu(long), Nampyungnogdu(Medium), and Seonhwanogdu(short), hypocotyl elong-ation was measured 4 to 6 days after seeding in paper towel at different temperatures (15, 20, 25, 30, and 35$^{\circ}C$). Hypocotyl elongation of mungbean seed stored at 5$\pm$1$^{\circ}C$ for 6 months was compared with of seed stored at room temperature. As the temperature rises, the hypocotyl is longer. The hypocotyl elongation started immediately at high temperature, and longest at the range of 30 to 35$^{\circ}C$. The hypocotyl elongation became longer at the 5$^{\circ}C$ storage plot than at the room temperature plot. Correlation coefficient (r) between 100 seed weight and hypocotyllength are not significant.

  • PDF

Effect of Deposition Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by RF Magnetron Sputtering (스퍼터 공정을 이용한 SiZnSnO 산화물 반도체 박막 트랜지스터의 증착 온도에 따른 특성)

  • Ko, Kyung Min;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.282-285
    • /
    • 2014
  • We have investigated the structural and electrical properties of Si-Zn-Sn-O (SZTO) thin films deposited by RF magnetron sputtering at various deposition temperatures from RT to $350^{\circ}C$. All the SZTO thin fims are amorphous structure. The mobility of SZTO thin film has been changed depending on the deposition temperature. SZTO thin film transistor shows mobility of 8.715 $cm^2/Vs$ at room temperature. We performed the electrical stress test by applying gate and drain voltage. SZTO thin film transistor shows good stability deposited at room temperature while showing poor stability deposited at $350^{\circ}C$. As a result, the electrical performance and stability have been changed depending on deposition temperature mainly because high deposition temperature loosened the amorphous structure generating more oxygen vacancies.

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Fabrication and Mechanical Properties of TiNi/6061Al Smart Composite by Permanent Mold Casting (금형주조법을 이용한 TiNi/6061Al 지적복합재료의 제조 및 기계적 특성)

  • Kim, Soon-Kook;Lee, Jun-Hee;Yun, Doo-Pyo;Park, Young-Chul;Lee, Gyu-Chang;Kim, Young-Hee
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.534-540
    • /
    • 1998
  • 6061Al-matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by Permanent Mold Casting to investigate the mechanical properties of the smart composites. The composites have showed good interface bonding as a result of the analysis of SEM and EDX. The smartness of composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stresses in the matrix material when heated after being prestrained. The tensile strength of the composites was tested at temperatures between $90^{\circ}C$ and room temperature with increasing amount of pre-strain, and it showed that the tensile strength at $90^{\circ}C$ was higher than that of the room temperature. Especially, the tensile strength of the composite increases with increasing pre-strain. It showed that hardness of matrix was higher than that of common 6061Al alloy.

  • PDF

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

Preparation of High Molecular Weight Poly(methyl methacrylate) with High Yield by Room Temperature Suspension Polymerization of Methyl Methacrylate

  • Lyoo, Won-Seok;Noh, Seok-Kyun;Yeum, Jeong-Hyun;Kang, Gu-Chan;Ghim, Han-Do;Lee, Jinwon;Ji, Byung-Chul
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • To obtain high molecular weight (HMW) poly(methyl methacrylate) (PMMA) with high conversion, methyl methacrylate (MMA) was polymerized in suspension using a room temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior of MMA and the molecular parameters of PMMA were investigated. On the whole, the experimental results well corresponded to the theoretically predicted tendencies. These effects could be explained by a kinetic order of ADMVN concentration calculated by an initial rate method and an activation energy difference of polymerization obtained from the Arrhenius plot. Suspension polymerization at 25℃ by adopting ADMVN proved to be successful in obtaining PMMA of HMW (number-average degree of polymerization (P/sub n/): 30,900-36,100) and of high yield (ultimate conversion of MMA into PMMA: 83-93 %) with diminishing heat generated during polymerization. The P/sub n/ and lightness were higher and polydispersity index was lower with PMMA polymerized at lower temperatures.