DOI QR코드

DOI QR Code

Effect of Deposition Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by RF Magnetron Sputtering

스퍼터 공정을 이용한 SiZnSnO 산화물 반도체 박막 트랜지스터의 증착 온도에 따른 특성

  • Ko, Kyung Min (Department of Semiconductor Engineering, Cheongju University) ;
  • Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
  • 고경민 (청주대학교 반도체공학과) ;
  • 이상렬 (청주대학교 반도체공학과)
  • Received : 2014.04.04
  • Accepted : 2014.04.17
  • Published : 2014.05.01

Abstract

We have investigated the structural and electrical properties of Si-Zn-Sn-O (SZTO) thin films deposited by RF magnetron sputtering at various deposition temperatures from RT to $350^{\circ}C$. All the SZTO thin fims are amorphous structure. The mobility of SZTO thin film has been changed depending on the deposition temperature. SZTO thin film transistor shows mobility of 8.715 $cm^2/Vs$ at room temperature. We performed the electrical stress test by applying gate and drain voltage. SZTO thin film transistor shows good stability deposited at room temperature while showing poor stability deposited at $350^{\circ}C$. As a result, the electrical performance and stability have been changed depending on deposition temperature mainly because high deposition temperature loosened the amorphous structure generating more oxygen vacancies.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. E. G. Chong, Y. S. Chun, and S. Y. Lee, Appl. Phys. Lett., 96, 152102 (2010). https://doi.org/10.1063/1.3387819
  3. E. G. Chong, Y. S. Chun, and S. Y. Lee, Electrochem. Solid State Lett., 14, H96 (2011). https://doi.org/10.1149/1.3518518
  4. E. Fortunato, A. Pimentel, A. Goncalve, A. Marques, and R. Martins, Thin Solid Films, 502, 104 (2006). https://doi.org/10.1016/j.tsf.2005.07.311
  5. B. D. Ahn, J. H. Kim, H. S. Kang, C. H. Lee, S. H. Oh, K. W. Kim, G. E. Jang, and S. Y. Lee, Thin Solid Films, 516, 1382 (2008). https://doi.org/10.1016/j.tsf.2007.03.072
  6. J. Y. Choi, S. S. Kim, and S. Y. Lee, Appl. Phys. Lett., 100, 022109 (2012). https://doi.org/10.1063/1.3669700
  7. D. H. Lee, Y. J. Chang, G. S. Herman, and C. H. Chang, Adv. Mater., 19, 843 (2007). https://doi.org/10.1002/adma.200600961
  8. S. R. Mang, D. H. Yoon, I. Y. Jeon, H. K. Chung, and L. S. Pu, Journal of Vacuum Science & Technology A, 31, 030603 (2013).
  9. H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Thin Solid Films, 516, 1516 (2008). https://doi.org/10.1016/j.tsf.2007.03.161
  10. D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. O. Yang, and B. Lewis, J. Appl. Phys., 85, 8445 (1999). https://doi.org/10.1063/1.370695