• Title/Summary/Keyword: Roll error

Search Result 194, Processing Time 0.035 seconds

Evaluation of dose delivery accuracy due to variation in pitch and roll (세기변조방사선치료에서 Pitch와 Roll 변화에 따른 선량전달 정확성 평가)

  • Jeong, Chang Young;Bae, Sun Myung;Lee, Dong Hyung;Min, Soon Ki;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.239-245
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the pitch and roll rotational setup error with 6D robotic couch in Intensity Modulated Radiation Therapy (IMRT) for pelvic region in patients. Materials and Methods : Trilogy(Varian, USA) and 6D robotic couch(ProturaTM 1.4, CIVCO, USA) were used to measure and analyze the rotational setup error of 14 patients (157 setup cases) for pelvic region. The total 157 Images(CBCT 78, Radiography 79) were used to calculate the mean value and the incidence of pitch and roll rotational setup error with Microsoft Office Excel 2007. The measured data (3 mm, 3%) at the reference angle ($0^{\circ}$) without couch rotation of pitch and roll direction was compared to the others at different pitch and roll angles ($1^{\circ}$, $1.5^{\circ}$, $2^{\circ}$, $2.5^{\circ}$) to verify the accuracy of dose delivery by using 2D array ionization chamber (I'mRT Matrixx, IBA Dosimetry, Germany) and MultiCube Phantom(IBA Dosimetry, Germany). Result from the data, gamma index was evaluated. Results : The mean values of pitch and roll rotational setup error were $0.9^{\circ}{\pm}0.7$, $0.5^{\circ}{\pm}0.6$. The maximum values of them were $2.8^{\circ}$, $2.0^{\circ}$. All of the minimum values were zero. The mean values of gamma pass rate at four different pitch angles ($1^{\circ}$, $1.5^{\circ}$, $2^{\circ}$, $2.5^{\circ}$) were 97.75%, 96.65%, 94.38% and 90.91%. The mean values of gamma pass rate at four different roll angles ($1^{\circ}$, $1.5^{\circ}$, $2^{\circ}$, $2.5^{\circ}$) were 93.68%, 93.05%, 87.77% and 84.96%. when the same angles ($1^{\circ}$, $1.5^{\circ}$, $2^{\circ}$) of pitch and roll were applied simultaneously, The mean values of each angle were 94.90%, 92.37% and 87.88%, respectively. Conclusion : As a result of this study, it was able to recognize that the accuracy of dose delivered is lowered gradually as pitch and roll increases. In order to increase the accuracy of delivered dose, therefore, it is recommended to perform IGRT or correct patient's position in the pitch and roll direction, to improve the quality of treatment.

Analysis of Effect of the Spinning Vehicle on the GPS Signal (회전체의 GPS 신호 영향 분석)

  • Cho, Jong-Chul;Kim, Jeong-Won;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.189-191
    • /
    • 2006
  • This paper analyzes effect of the spinning vehicle on the GPS signal. In rapid spinning vehicles such as missiles and space rockets, carrier phase and frequency depend on the roll rate of the vehicle. It induces phase and frequency modulation caused by the roll rate. The modulated phase and frequency increase dynamic stress error of the tracking loop. Even though higher order tracking loop can remove dynamic stress error, the dynamic stress error can not be remove in this case. In order to analyze the effect of the spinning vehicle on the GPS signal, the experiments are carried out. The experiment results show the modulation of the carrier frequency and phase caused by the roll rate of the spinning vehicle.

  • PDF

A Roll Rate Estimation Method Using GNSS Signals for Spinning Vehicles (GNSS 신호를 이용한 회전체의 롤 회전 속도 추정 기법)

  • Kim, Jeong-Won;Cho, Jong-Chul;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.689-694
    • /
    • 2008
  • This paper proposes a roll rate estimation method for spinning vehicles. The carrier phase and frequency variations caused by spinning of vehicles are observed and the roll rate estimator is designed on the observation. The roll rate estimator consists of phase detector and zero crossing counter. The phase detector computes phase variation using in-phase and quadrature value from the correlator. By using zero crossing counter, the roll rate can be estimated since the output of phase detector is changed in proportion to the roll rate. Experiment a results show that estimated roll rate error is smaller than 0.0578Hz.

A Study on the Correlation between Curing Temperature and Thermal Deformation of a Moving Web in Roll-to-Roll Printed Electronics (롤투롤 인쇄 전자 시스템에서 건조 온도와 유연기판의 열변형간 상관관계에 대한 연구)

  • Lee, Jongsu;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.653-658
    • /
    • 2014
  • Roll-to-Roll printing process has become a great issue as a breakthrough for low cost and mass production of electronic devices such as organic thin film transistor, and etc. To print the electronic devices, multi-layer printing is essential, and high precision register control is required for this process. Unlike stop-and-repeat printing process, it is impossible to control the register in a static state since the roll-to-roll process is a continuous system. Therefore, the behavior of web such as polyethylene terephthalate (PET) and polyimide (PI) by the tensile and thermal stress generated in the roll-to-roll process as well as motor control of driven rolls has to be considered for a high precision register control. In this study, the correlation between curing temperature and thermal deformation of PET web is analyzed. Finally, it is verified experimentally that the temperature disturbance generates the more serious register error under the higher curing temperature.

Intersymbol interference due to sampling-time jitter and its approximations in a raised cosing filtered system

  • 박영미;목진담;나상신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2942-2953
    • /
    • 1996
  • This paper studies the effect of intersymbol interference due to sampling-time jitter on the worst-case bit error probability in a digital modultation over an additive white Gaussian noise channel, with the squared-root raised-cosine filters in the transmitter and the receiver. It derives approximation formulas using the Taylor series approximations. the principal results of this paper is the relationship between the worst-casse bit error probability, the degree of jitter, the roll factor of the raised cosine filter, and other quantities. Numerical results show, as expected, that the intersymbol interference decreases as the roll-off factor increases and the jitter decreases. They also show that the approximation formulas are accurate for smally intersymbol interference, i.e., for large roll-noise ratio $E_{b/}$ $N_{0}$.leq.7 dB and begin to lose accuracy for larger signal-to-noise ratio.o.o.

  • PDF

Development of Online Model for Mean Effective Strain, Roll Force and Area Reduction in Bar Rolling with Three Rolls (콕스밀에서 평균변형율, 압하력, 단면감소율에 대한 수식모델개발)

  • Je S. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.162-165
    • /
    • 2001
  • In industrial practice, caliber design in shape rolling depends on the designer's experience, which in general is obtained through costly trial-and error process. on-line model which is relations of mean effective strain, roll force and area reduction is derived from finite element process simultion in bar rolling with three rolls.

  • PDF

Analysis of Multi-Pass Shape Rolling Processes using Finite Element Method (유한 요소법을 이용한 다단패스 형상압연 공정 해석)

  • 김홍준;김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.69-77
    • /
    • 1999
  • Roll profile design in spape rolling with a complex-shaped part depends on the designer's experience, which is general, is acquired through costly trial-and-error process. As a prerequisite for developing a scientific approach to roll profile design, we present a finite element model to simulate 3-D deformation of complex-shaped parts occuring in multi-pass sequence. Demonstrated is the process model's capability to deal with rolling of a complex-shaped part.

  • PDF