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Intersymbol Interference Due to Sampling-Time Jitter and
Its Approximations in a Raised Cosine Filtered System

Young Mi Park®, Jin Dam Mok™ and Sangsin Na** Regular Members

ABSTRACT

This paper studies the effect of intersymbol interference due to sampling-time jitter on the worst-case bit error prob-
ability in a digital modulation over an additive white Gaussian noise channel, with the squared-root raised-cosine
filters in the transmitter and the receiver. It derives approximation formulas using the Taylor series appro-
ximations. The principal results of this paper is the relationship between the worst-case bit error probability, the
degree of jitter, the roll-off factor of the raised cosine filter, and other quantities. Numerical results show, as
expected, that the intersymbol interference decreases as the roll-off factor increases and the jitter decreases. They
also show that the approximation formulas are accurate for small intersymbol interference, i.e., for large roll-off

factors and for small jitter. Surprisingly these formulas are more accurate for small or moderate signal-to-noise

Ey, <
ratio -ﬁb— ~ 7 dB and begin to lose accuracy for larger signal-to-noise ratio.
0

Index terms:sampling-time jitter, square-root raised-cosine filters, bit error probability, intersymbol interference,

additive Gaussian noise channel, the Taylor serics approximation

1. Introduction

Consider a baseband digital communication system
in Fig. 1. The source emits either 1 or —1 in every T’
second and its output denoted by {X,}}._. is
assumed to be a binary independent identically
distributed (iid) random sequence. The transmitter is
considered a pulse-shaping filter with the impulse
response A (f). The output s(¢) of the transmitter is

sent over the channel, which adds a continuous-time
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random noise n(f). The receiver consists of a receiver
filter, a sampler, and a detector:the receiver filter
with the impulse response k,(f) takes in the signal »
(¢);the sampler samples the output z(#) of the receiver
filter at nominal time !=mT to produce z(mT),
which is compared with threshold ¥ =0 to estimate
the transmitted source sequence.

The Problem Statement In a practical digital com-
munication system, imperfect timing is bound to
occur in the sampling of the receiver filter output
This sampling-time jitter causes the sampling-time to
be out of integer multiples of the source symbol dur-
ation T and the system to suffer intersymbol inter-
ference. A reasonable approach to capturing jitter is
to model the sampling-time as a random sequence, e.g.,

model the sampling time {Z,}5. as a random

-0
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sequence
=T +T,, )
where {T,,} := _ Is an iid Gaussian random sequence

with mean 0 and variance ¢ . We are concerned with
the evaluation of the bit error probability P(E) < Pr
(A; & # X3). It is pointed out that the pulse-shaping filter
hy(t) and the receiver filter &, (¢) are individually of a
squared-root raised cosine characteristic and the overall
response A, () < h(t)*h,(t) constitutes a raised
cosine filter.

Previous work for sampling-time jitter has been
reported in the literature, e.g., [1, 2, 3]. For the case
of binary signaling over an additive white Gaussian
noise channel, Lindsey and Simon in [1] discuss the
jitter effect on the bit error probability as a function
of signal-to-noise ratio for various degrees of jitter.
There the correlator synchronization error effect is
discussed for baseband signals : nonreturn-to-zero pulses,
the Manchester code, return-to-zero signals, and the
Miller code. Since they assumed implicitly infinite
channel bandwidth, jitter affects at most three source
bits. Huang and et al. in [2] deals with pulses in con-
nection with intersymbol interference and jitter.
Raised cosine and/or square-root raised cosine filters
are discussed as a method of relieving the adverse
effect of sampling-time jitter and a general introduc-
tion can be found in [3] among others.

This paper resembles [1] in that the purpose and
results are in the same vein, but differs from the pre-
vious work including [1] in that herein is studied jitter
with square-root raised-cosine pulse shaping filters.
And to the best of authors’ knowledge, there has been
no report on the study of the effect of the sampling-
time jitter combined with (square-root) raised-cosine
filters on the bit error probability from the Taylor
series approximation viewpoint.

The principal results of this paper are (a) the
relationship between the worst-case bit error prob-

ability and the affecting factors such as the roll-off

factors and the degree of sampling-time jitter, and (b)
two approximation formulas for the worst-case bit
error probability derived from the Taylor series
approximation. Numerical results show that the error
probability decreases as the roll-off factor increases
and the jitter decreases, as expected. They also show
that the derived formulas become more accurate for a
large roll-off factor and for small jitter. Surprisingly
these formulas are more accurate for small or moderate

. . . E <
signal-to-noise ratio N = 7 dB and begin to lose
0

accuracy for larger signal-to-noise ratio.

The rest of the paper is organized as follows : Section
2 formulates the problem in mathematical terms and
presents the analysis;Section 3 presents numerical
results and discusses them;and the conclusions follow

in Section 4.
II. Formulation and Analysis

The goal of this paper is to compute the worst-case
bit error probability P(E)=Pr(X, # X3) and to derive
an approximation formula for it. Consider the output
5(t) of the pulse-shaping filter A(¢) in Fig. 1 due to
the source sequence:s(t) =3, X,h,(¢ —kT). Then the

k=—-w

receiver filter output z(#) is given as follows:
z(t)=(s(t)+n(t))*h,(t)=k_2_ Xiho(t—KT)* b, () +n(t) » b, (8),

where h($) and A,(¢) are square-root raised-cosine

filters given by

by @=—YL— (125 neE (1-0)
1-(*2)
T
4a nt
+—eos (o (1 +a))). (0))

and where n(¥) is an additive white Gaussian noise

s . N .
with its power spectral density S, (f) = 70 and is statis-
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tically independent of the source sequence { T} ,_ _ ., -
. i A
For notational convenience, k,(t) = h,(t)* A, (#) and
A
n,(£) = n(t)+ A, (¢). (This paper assumes that the fil-
ter h,(¢) is approprately delayed and truncated for
causality, though the notation does not so indicate.
And the truncation length will be specified explicitly
when needed.) Then, since &, —ET)*h, ()= h,{t —kT),

we can rewrite 2 (¢) as

o0
2= 3 Xph,(t—kT) +n,(). (3)
k= -
It is assumed that the jitter random sequence {T,,,};':= ®
is independent of the source sequence { X k};:_m and

the channel noise #(¢). Without the loss of generality
due to the strict sense stationarity of {X},_ __.,
n(t), and {T,,} "

me -w » W€ can carry out the analysis

for X, and the resulting bit error probability will be
valid for an arbitrary %&. Therefore, we will assume
that the source bit X, is transmitted and that the
decision for X, is based on z(f) sampled at £=1¢, 2
0-T+T, where T, is the random variable that
accounts for sampling-time jitter at the supposed
sampling time £/=0. We also note that the bit error
probability P(E) can be simplified to be

P(E)=Pr(z(T)) (0l Xy=1). @

The decision for X will be

G|l 2@y,
Ty, 2Ty (Y.

The decision variable z(7,) is broken into several

terms: from (3)
z2(To)=2z(D) |t=l° =k_Z Xph,(to—kT) +n, (to)

=Xoho(To) + L Xphy(To—kT) +n,(To), %)
s

where the first term in (5) is due to the corresponding

source bit X,, the second the source bits other than

X,, and the last the noise. The second term is the

2944

intersymbol interference. The last term 7, (f) is the

noise due to the channel noise and is given by =, ()=

©

h,(t)'n(t)=[ h,()n(t—wdu. Since the linear
operation on a Gaussian random process yields a
Gaussian random process, 7, (f) is Gaussian and »,

(Ty) is a Gaussian random variable with mean 0 and

variance
N on
70 Vh, (2)|* du. 6

We note that »,(T,) is independent of T, and hence
we use 7, instead when notational convenience is pre-
ferred. In case that it is not truncated, from the
Parseval theorem we can get A
E{n,z(ro);:g—‘! * b @)l du=% [ e nrar.
Let o denote E{n?(T,)}, the variance of n,(T). Then
from the above argument we have 7,(T,) Gaussian
with mean 0 and variance cr: given in (6).

The truncated % - ,, 4+, (#) with the truncation length
2L +1 is defined by

Ry aa(@) 2 NN (BIJ:W)

_{hw(t), I¢] s(L+,,;_,)T’

0, elsewhere.

)]

It is noted that &, , 4 (¢) approaches & (f) as L
gets arbitrarily large. In practice L=10 suffices for
almost all a including a =0, since L =10 accounts for
98% or more of L =0, For mathematical tractability,
this paper will use the untruncated /E, £ (f) in (2)
as the pulse-shaping ilter A, (¢) at the transmitter, i.e.,
hy(t)= /Es k s (£). With this untruncated pulse-shaping
filter at the transmitter, the overall filter response kg (2)
will be given by k()= /Ey by )% h s 31 1, (#). For
a large L the response %,(f) can be approximated by

1
the untruncated raised-cosine filter £(¢) for |t] < EY

(2L +1). For this reason we will use in the rest of the
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paper h,(¢) = \/E hap +1(8).
With the truncation length 2L -1, the decision

variable in (5) is now simplified to yield

L
2(To)= Xoh,(T) +k=Z_LXhhn(To“kT) +n,(Ty), (8
k+#0
Now we apply the Taylor series approximation to
each A,(T,—kT) for k= —L,....L. The first three
terms of the Taylor series approximation is used in
the paper:at around ¢ =&T

ho(t) % by RT) +h [ KT) (¢ = RT) + - hT) (¢~ kT)*

By the first-order and the second-order approxima-
tions we mean the ones obtained taking up to the linear
term, i.e., the first derivative term, and the quadratic
term, i.e., the second derivative term, respectively.

For the truncated raised-cosine filter %,(® = Ay, +(®,
we obtain Table 1. Then X, k,(Ty—kT) can be approxi-
mated as

2
Xeho(To—kT) = L cu X, T}, )]
i=0

where ¢y, is the first / coefficients of the Taylor series
of h,(t) evaluated at ¢ = —£T, i.c.,

a1

Cpt = l‘ h‘(,n("kT) (10)

Summing (9) over & from —L to L, we get

L2 2 L
Y LeuXeT/= Y ¥ cuXeT)
k=—1L [=0 =0 k=L

Let W; denote ZL _1. Cri Xy Then from (8) the decision
variable can be written as

Z(T())zW() +W| T0+W2T02 +ﬂ,(T0), (11)
where

(a)the random variables W,, W, and W, are deter-

mined by iid binary random sequence X _; X _, 4,

-+ X, and A, (?),

(b)the random variable T, is a Gaussian random
variable that is independent of X}’s and hence of
W;’s and that the mean 0 and variance o2 ,

(c)and the random variable #,(T,) is a Gaussian
random variable, independent of T, and X,s,

with the mean 0 and the variance ¢2 given in

(6).

2.1 The Worst-Case Analysis : The First-Order Effect
of Jitter

The worst-case of the intersymbol interference due

to the sampling-time jitter can be studied from a close

look at (4). From (8) the worst-case interference

occurs when each individual term in

L
Y Xpho(To—FkT)
k=L
k#0

affects adversely, i.e., Xph,(To—kT)= |h,(To—kT)|
for each k. Then

PE)=Prz(T) (0l X,=1 < Pr(h,,(To)

L
— L 1h(To=kD)| +2, (T (01 Xo=1).
Ty
We denote the bounding probability in the right hand
side of the above inequality by P;(E), which will be

called the worst-case bit error probability,

L
P(B) S Pr(h(T)~ L Ty 42,0 01 Xo=1)
k#0

Approximation formulas for P,(E) can be derived
from (11). The first-order approximation of P,(E) is
obtained by treated W, as 0 for the following reason.
It can be conceivable that one can approximate the
overall filter k,(?) to the degree of precision that one
wants by taking the desired number of terms in the
Taylor series approximation. In this regard, by the
first-order effect, we will mean the effect of jitter
when the first-order approximation is used and hence
the terms due to the second-order derivative of 4, (f)
or higher are ignored. This then dictates setting W, in
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Table 1. The derivatives of A,(t) evaluated at { = kT

k=0 k=+1,£2,... L
ho(KT) A/ Ey: 1 0
/ . —1)* cos(amk) if 20k
ho(kT)/\/ Eb. 0 %7_'(1%)—;_;777 I 2o 76 1

CU7 ifoak =1

4T >

(02(24—37r2)—1r2) 2(-1)% ((l?.oz2 k?—1) cos(ark}+amk(4a?k?-1) sin(oﬂrk))

(1) to 0.

H A .
h2(kT) A/ Ey: 77T Tt (1 ta)” , if 2ak # 1
1 )
- Tl-) %é’y,lf2ak:1
Then, using 7, for n,(T,) due to the independence Wo= VE given Xo=1,
of #,(Ty) and T, as noted previously, the first-order VEs L (=D cos(ank
y W, = b 5 ) (amk) X o= X0,

approximation P,(E) of P4(E) can be derived from

the following expression :

PAN
P (E) = max PriW,+W, T, +n,{0|X;=1)

XX

= max U Fronix, @, 01 Xo= dudy, (12)
fu+2¢0

X"wXLW,.+

where fr..1x, (#, vlXy=1) is the joint probability
density function of Ty and #, conditioned on X;=1.
The first-order approximation P,(E) of Py(E) is
obtained when W, takes on a value that maximizes

(12). The decision region will be determined by
Wo+W,Ty+n, {0 given Xy=1.

For the computation of Wy and W), one can use X,=
1, the Taylor series coefficients ¢; in (10) and Table 1

to obtain

2946

T T k(1—4a® RY)

It is noted that W, is still a random variable while W,
=1 due to the conditioning on X;=1. We will treat
W, for the time being as a constant. (Or one can use
enough condition so that it may be treated as a con-
stant.)

The evaluation can be carried out without perfo-
rming the double integral in the above expression, by
noting that 7y and %, are independent Gaussian random
variables. Let Y 2 W Ty, +mn,. Then Y is Gaussian

with the mean 0 and the variance ¢} =W 02 + 2.

1 Sronx, (0, 01 Xy = D dudy
Wou+vS VE, (0 \ \[
Y A S ¥ N vEs
_J‘—cx) \/2—7;0')/ € Y Q( oy )

The maximum probability is obtained, when W, achieves

either its maximum or its minimum over the choice of
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the source bit sequence X_; X_; 43 X_ X, Xy,
where each X, can take on either 1 or —1. This is due
to the fact that the maximum or minimum value of
W, will make oy largest and the resulting probability
maximum. (The maximum and minimum have the
same value with the opposite signs.) The maximum of

W), denoted by 4, is

A 2JVE, & cos(ank)
B R —aae) a3
For a=0, the source bit sequence that achieves this
maximum is X;=—-X_,=1, X,=—X_,= —1, and so
on. Therefore the first-order approximation P,(E) of

Py(E) is given by

P(B)=0( VE; )
2VEsor L cos(ank) )L e
I T E.Ik(l—:;alkZ) Y +";]2( )
14

In case that L is large, the variance af, approximately
N N .
equals “2—0. For this a: =—i°—, we rewrite (14) as
2B
No
2Ey 207 i’ cos (ank)
No T i1 k(1-442kD)

follows: for large L,

P](E)=Q(

).

(15

D2+1]2

We can make several observations from (14)-(15).

(a)When there is no jitter in sampling-time and
hence no intersymbol interference, this case cor-
responds to ar=20. In such a case the worst-case
bit error probability Py(E) reduces to the opti-
mum bit error probability for antipodal sign-

aling, i.e.,

pb(E)=Q(\[%;’i )

as is expected. This can be a partial support that
the result agrees well with the known analysis.
(b)If there is no channel noise, this corresponds to

No=0 and accordingly ¢2=0. This would be a

situation one may use to study the intersymbol

interference alone. In this case we have

T
201
P.(E)|N.:0=Q( L cos(ank) )
o
o B s
= lim PAE). (16)
5 e
Ne

From (16) we can study the effect of the roll-off
factor a on the bit error probability. A couple of

examples =0 and 1 are discussed.

The case of a=0:This choice of « yields

L cos{ank) _ i

i
e U (1 ~da?k?) la=0 = R

which grows without bound as L becomes arbi-
trarily large. This implies that, although % is
small, the worst-case bit error probability can be
very large. In theory it becomes —-:1):— for L=o00
and can nullify the communication system. Thr-

ough a computer evaluation, 3_}°, ~ 2.929.

4
k
The case of =1 For this case

L cos(ank)

k=1 k(l '—4d2k2) a=1

converges with L. To confirm the convergence
one can use the alternating series theorem, see
for example [5, p.78]. A computer evaluation

yields

0 cos(nk)

& ri—ar) | 703852

The comparison with a=0 for the truncation
length 2L +1=2- 20 +1 =21 gives the ratio of
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% & 7.604. Therefore, for L =10, the sig-
nal-lo-interference ratio is better with a=1 than
with «=0. Quantitatively, the roll-off factor a=
1 is 10logi07.604~8.81 dB better than a=0.
However, it must be noted that this gain does
not come free since the filter with a=1 uses

double the bandwidth of a=0.

2.2 The Worst-Case Analysis: The Second-Order
Effect of litter

The first-order approximation Pi(E) of the worst-

case bit error probability Py(E) loses accuracy as the

degree of jitter increases. Numerical results for a=1
oT . .
show that, when T < 0.03, the approximation P(E)

is approximately 70% of Ps(E) on the average over
E .

Tb =0~10 dB. (The subsequent section
0

the range of
has a more detailed discussion on the accuracy.)

To have a better approximation formula than P,
(E), we can take more terms in the Taylor series ap-
proximation. We define the second-order approxi-
mation P»(E) of the worst-case bit error probability

Ps(E) by the following formula:from (11)

Pz(E) £ max Pr(Wo +WlTo ‘+‘W2T%, +n,<0 |X0= ]),
Xop, o XL
a7

where

Wo= VEs given Xo=1,

VEs

i (— 1) cos(ank)

== X_z—Xp),
Wi="F L hicaatr KemX
vV Ep 24a® —3a*n* — 1’ -
= +2 %
Wiz 3 Pyl

(= D*(12a2E? — 1) coslank) +ank(da’k? —1)sin(ank))
F(1—4a*k?)?

X -r—Xn).
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The source sequence X-,— X, that achieves P5(E) in
general depends on the roll-off factor « and is not
simple to find. However, for the case of =0 and 1,
simpler expressions for P»(E) can be found from a
straightforward evaluation and simplification. Since
deriving an useful information from (17) is not easy,
we close the section noting that in the subsequent sec-
tion the two approximations will be compared for
their accuracy.

In the following section numerical results are pres-

ented based on the analysis developed here.
. Numerical Results

Through numerical evaluation of (15) and (17) we
obtain several results, which are tabulated in Tables 2
and 3, and plotted in Figs. 2-3. The chosen roll-off
factors are 0, 0.2, 0.35, 0.5, and . Since there is a
convergence problem when a=0, the truncation leng-
th is chosen to be 2L +1 =21. We believe that L =10
accounts for communication systems in practice and

is considered big enough to justify the approximation
, N . @ S
that g, = —52 . The chosen ratio 77 of the Gaussian jit-

ter deviation to the source symbol duration are 0.01,
0.03, 0.05, and 0.1.

E
Fig. 2 shows Pi(E), P»(E) and Py(E) versus —le—- for
0
the roll-off factor a=1 as the degree of jitter, %‘t’ is

E,
varied, while Fig. 3 shows Pi(E) and P« E) versus Tb
0

for -1,;- =0.01 for various roll-off factors. The value
ETL =0.01 is chosen, since for this value the approxi-
mation formulas are considered accurate enough to
discuss the effect of various roll-off factors on the
worst-case bit error probability and to compare with
the simulated Py(E).

Fig. 2 shows that the general trend is that the in-
tersymbol interference worsens and the disparily be-

tween the simulated error probability and the appro-
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Source Channel Noise Sampling
n(t)
t=mT
s(t) r(t )< !
X hs(t) + () he(t) ——-—Z( ) Z 2N samne Xk
-1
Pulse-Shaping Filter Receiver Filter Detector

Fig. 1 The block diagram of the baseband digital communication system

)0

P2{E) x
POHLE) - 1
1 2 3 4 1 L] 7 L} 1] w0
EbMNo cS
(a)
10—
10"
107 4
PHE} o 10”) PyE) o
P2(E) x P2E) s
PO(E) « 107 O(E) o 1
10"
1 2 3 « 0 7 . ] 0 ° 1 2 3 + ) s 7 s 9 10
M B EnMNo 08
© (d)

Fig. 2 P(E), PAE) and P(E) vs. ']—Evb— for a=1 (a)a—; =0.01
o

(b i’% =0.03 (¢ i’TI =0.05 (d)”—; =0.1.
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PI{E) o

10 PO(E)
.
0 v 2 3 4 s 3 7 ] 3 e
EwNo 48
(a)
10° -
!
10" N
i
|
|
10* 'I
i
{
i
|
)
10 1
Pi{E)o i
wh o P i
i
10"
o 1 2 3 4 s ] Y [ ) [}
1Mo 68
©

1 2 ] . ] 7 ] 9 <
EbNo a9
(b
;
1
i
PLE)o
POE) o
t 2 3 4 5 [] 7 0 9 10
ENo a8
(d)

Fig. 3 Pi(E) and PyE) vs. —2 for 2L =0.01 (a)a=0 (b)a

=0.2 (c)a=0.35 (d)a=0.5.

L. a

ximations increases with -—%T— The latter means that
. g

the approximations lose accuracy for large —% Also

we can make the following observations from these

plots.
(a) We have, for the most cases, Pi(E)< PAE)< Py

(E). One exceptional case is for -UT—T =0.1. In that
case Py(E) starts out smaller and becomes bigger
Es

than Py(E) at around ~ 7 dB.

]

(b) The approximation formulas maintain reason-
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able accuracy up to g% ~ (.03 for all the range

E »
L5 0~10 dB. For X 2 0.01, P(E) is at least
No T

90% and on the average approximately 95% of

of

Py(E), while Py(E) is more accurate. For % ~0.

E
03, Pi(E) is over 90% of P«(E) for up to —A-/b“ =6
0

E
dB, about 80% for —Xli =7~8 dB, and about 70%
0

E
b —9~10 4B, while P(E) is closer to Py(E)

for
[}

than P\(E) in that Py(E) stays within 78% of P
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Table 2. Pi(E), PAE) and PxE) for a=1

a=1 & =0.01 a=1 ZF =0.03
£dB PA(B)  R(E)  R(E) | fd PE  RE) BE)
0 7.8662E-2 7.8769E-2 8.0410E-2 0 7.8760E-2 7.9739E-2 8.3370E-2
1 5.6295E-2 5.6388E-2 5.7820E-2 1 5.6403E-2 5.7255E-2 6.0100E-2
2 3.7520E-2 3.7595E-2  3.8480E-2 2 3.7629E-2 3.8324E-2 3.9600E-2
3 2.2891E-2 2.2947E-2 2.3870E-2 3 2.2994E-2 2.3516E-2 2.4210E-2
4 1.2512E-2  1.2549E-2 1.3590E-2 4 1.2598E-2 1.2953E-2 1.3560E-2
5 5.9619E-3 5.9840E-3 6.6500E-3 3 6.0258L2-3  6.2376E-3  6.6700E-3
6 2.3933E-3 2.4042E-3 2.5233E-3 6 2.4332E-3 2.5411E-3 2.7000E-3
7 7.7519E-4 7.7960E-4 8.3760E-4 7 7.9540E-4 8.4051E-4 9.6200E-4
8 1.9188E-4 1.9324E-4 2.1010E-4 § 1.9973E-4  2.1449E-4 2.5600E-4
9 3.3895E-5 3.4196E-5 3.7500E-5 9 3.6088E-5 3.9648E-5 5.0700E-5
10 3.9206E-6 3.9645E-6  4.0000E-6 10 4.3248E-6  4.9157E-6  6.3000E-6
a=1 =005 a=1 Z=01
#dB  P(E)  P(E) P(E) || £dB  P(E) Py(E) Py(E)
0 7.8957E-2 8.1751E-2 8.6190E-2 0 7.9878E-2 9.2459E-2 9.9310E-2
1 5.6618E-2 5.9071E-2 6.2900E-2 1 5.7622E-2 6.9129E-2 7.5110E-2
2 3.7848E-2 3.9875E-2 4.2680E-2 2 3.8876E-2 4.8935E-2 5.3740E-2
3 2.3200E-2 2.4751E-2 2.6610E-2 3 2.4169E-2 3.2516E-2 3.6140E-2
4 1.2772E-2  1.3852E-2 1.5120E-2 4 1.3598E-2  2.0134E-2 2.2110E-2
5 6.1546E-3 6.8242E-3 7.6400E-3 5 6.7752E-3 1.1589E-2 1.2650E-2
6 2.5142E-3 2.8746E-3_ 3.3400E-3 6 2.9137E-3  6.2546E-3 6.4160E-3
7 8.3685E-4 1.0004E-3 1.1500E-3 7 1.0494E-3  3.2566E-3  3.0360E-3
8 2.1614E-4 2.7666E-4 3.3500E-4 3 3.0585E-4 1.7221E-3 1.3000E-3
9 4.0802E-5 5.8442E-5 7.4400E-5 9 6.9415E-5 9.7862E-4 5.2800E-4
10 5.2350E-6 9.1514E-6  1.0400E-5 10 1.1775E-5 6.1480E-4 1.9350E-4

E
(E) over the range of — =0~10 dB. For ar <
No T

0.05 the gap between the first and second-order
approximations is noticeable, while for smaller
jitter this gap is insignificant. This noticeable gap
is an indication that a higher-order approxi-
mation may yield better accuracy. On the other
hand, we believe that higher-order approxi-

mations lose simplicity and may not be so useful.

(c) It can be seen with the aid of Table 2 that in gen-

eral the accuracy of the approximation for-

Ey .
mulas decreases as e increases. The loss of ac-
0

Eb ~7 4B and
N

0

curacy accelerates at around

wor-

sens for large iTT-. We think that it is caused by

. . E
the fact that, for large & , the increase in 2 ap
T Ny
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fects severely the argument of the Q function in

(15).

Fig. 3 shows plots of P\(E) and Py(E) for a fixed 27:T~

=0.01 and for various roll-off factors. The first im-
pression from it is that the intersymbol interference
due to sampling-time jitter decreases as the roll-off
factor increases. This is a widely known result and in
fact this is the reason that the raised-cosine pulse-

shaping filters are used. They also show that the ac-

Table 3. Pi(E) and PKE) for “—7? =001

a=0

=02

E
£ 4B

a

P(E)

Py(E)

Py(E)

Py(E)

0 7.9361E-2
5.7058E-2
3.8298L-2
2.3623E-2

—

1.3131E-2
6.4229k-3
2.6851E-3
9.2615E-4
2.5273E-4

K= R - N < B Ny JCR N}

5.1928E-5
10 7.5871E-6

$.8888E-2
6.5137E-2
2.4991E-2
2.8623E-2
1.6466E-2
8.3400E-3
3.654GE-3
1.3170E-3
3.9600E-4
8.9200E-5
1.2200E-5

7.8942E-2
5.6600E-2
3.7831E-2
2.3183E-2
1.2758E-2
6.1443E-3
2.5077E-3
8.3348E-4
2.1479E-4
4.0408E-5
5.1569E-6

8.5199E-2
6.2067E-2
4.2244F-2
2.6468E-2
1.4980E-2
7.4461E-3
3.1615E-3
1.1018E-3
3.0290E-4
6.0300E-5
7.6000E-6

a =035

a =05

£.dB| P(E)

P(E)

Pi(E)

Py(E)

0 | 7.8797E-2
1 | 5.6443E-2
3.7670E-2
2.3032E-2
1.2631E-2
6.0497E-3
2.4482E-3
8.0301E-4
2.0272E-4

=R I T R L - e

3.6933E-5

—
o

4.4838L-6

8.3250E-2
6.0334E-2
4.0828E-2
2.5368E-2
1.4185E-2
6.9648E-3
2.9065E-3
9.9410E-4
2.6550E-4
5.13005-5
6.1000L-6

7.8729E-2
5.6368E-2
3.7594E-2
2.2961E-2
1.2570E-2
6.0052E-3
2.4203E-3
7.8886E-4
1.9718E-4
3.5371E-5
4.1912E-6

8.2220E-2
5.9150E-2
3.8720E-2
2.3740E-2
1.3220E-2
6.3600E-3
2.5100E-3
9.1000E-4
2.4300E-4
4.5400E-5
§.4000E-6

2952

curacy of the first-order approximation gets better as
the roll-off factor increases, as can be seen that the
size of the gap between the curves marked by ‘ o’ for
Pi(E) and ' +' for Py(£) becomes smaller.

V. Conclusions

This paper addresses the effect of sampling-time jit-
ter on the error probability in a baseband communi-
cation system thal uses square-root raised-cosine fil-
ters. Approximation formulas of the worst-case bit er-
ror probability are derived from the Taylor series ap-
proximation of the overall filter response. For an ad-
ditive white Gaussian noise channel, these formulas
can be used to investigate the relationship of the worst-
case bit error probability and the affecting factors : the
degree of jitter % s the signal-to-noise ratio ET[; ; the roll-
off factor a;and the truncation length L. These for-
mulas are reasonably accurate when the degree of jit-
ter is approximately within 3% in the case of a=1.0.
Their accuracy suffers for large jitter and large signal-

to-noise ratio.
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