• Title/Summary/Keyword: Rocket motor

Search Result 379, Processing Time 0.022 seconds

Numerical Study on the Unsteady Solid Rocket Propellant Combustion with Erosive Burning (침식효과를 고려한 고체 로켓 추진제의 비정상 연소에 관한 수치해석)

  • Lee, Sung-Nam;Baek, Seung-Wook;Kim, Kyung-Moo;Kim, Yoon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.774-779
    • /
    • 2009
  • A numerical modelling was performed to predict unsteady combustion processes for the AP/HTPB/Al propellant in a solid rocket motor. Its results were compared with the experimental data. Temporal pressure development was found to match quite well with measured data. A change in propellant surface was traced using the moving grid. The propellant thickness change was also observed to confirm the erosive burning effect.

Flow Dynamics in a Supersonic Diffuser at Minimum Starting Condition to Simulate Rocket's High Altitude Test on the Ground

  • Yeom, Hyo-Won;Yoon, Sang-Kyu;Sung, Hong-Gye;Kim, Yong-Wook;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.442-447
    • /
    • 2008
  • A numerical analysis has been conducted to investigate and characterize the unsteadiness of flow structure and oscillatory vacuum pressure inside of a supersonic diffuser equipped to simulate the high-altitude rocket test on the ground. A physical model of concern includes a rocket motor, a vacuum chamber, and a diffuser, which have axisymmetric configurations, using nitrogen gas as a driving fluid. Emphasis is placed on investigating physical phenomena of very complex and oscillatory flow evolutions in the diffuser operating at very close to the starting condition, i.e. minimum starting condition, which is one of major important parameters in diffuser design points of view.

  • PDF

Unsteady Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내타도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.221-226
    • /
    • 2008
  • A typical unsteady internal ballistic analysis model was proposed to take account the erosive burning with the variance of local velocity and pressure along grain surface to the axis of a solid rocket combustor. The model introduced in this study showed good agreements with the results of previous research. It was investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect on the erosive burning.

  • PDF

The Interaction of Vortex Shedding Behavior in Hybrid Rocket Combustion (와류간섭에 의한 하이브리드로켓 연소 특성)

  • Park, Kyung-Soo;Lee, Chang-Jin;Shin, Kyung-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.244-248
    • /
    • 2012
  • A series of hybrid rocket combustion experiments were carried out with PMMA/GOx changing diameter and length of the disk installed at pre-chamber. The disk can generate vortex shedding flow and change flow conditions prior to entering the fuel grain which could also alter the combustion characteristics and pressure oscillations. The interaction of vortex shedding in the pre-chamber and small-scale vortices adjacent to burning surfaces by using combustion test.

  • PDF

Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내탄도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning with the variance of local velocity and pressure along the grain surface of a solid rocket combustor. To validate the model of concern in the study, both cases of non-erosive and erosive burning were compared with the previous researches with marginal accuracy. It was quantitatively investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect the erosive burning characteristics.

Development of Thrust Measurement System for Liquid Rocket Engine (액체로켓의 추력 측정 시스템 개발)

  • Park, S.H.;Park, H.H.;Kim, Y.;Kim, H.Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.16-23
    • /
    • 2001
  • For liquid rocket engine test, one of most important design parameters to be measured is thrust. However, not like solid rocket motor, a liquid rocket engine is attached to the propellant feed system, control valve and many other safety systems. Without considering these effects, thrust data measured from firing test is not reliable and sometimes almost meaningless. In this research, new thrust measurement system, which includes all these side effects, was designed and fabricated.

  • PDF

A Study on Thrust Characteristics of a Small solid Rocket with Variation of Grain Configuration (소형 고체 로켓 추진제의 그레인의 형상 변화에 따른 추력 특성 연구)

  • Go, Tae-Sig;Sim, Jin-Ho;Yong, Seung-Juu;Lee, Byung-Gil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This work is to observe combustion characteristics depending on variation of the solid propellent grain configuration. The LRE (Liquid Rocket Engine) enables adjusting the thrust by controling the required fuel mass glow, but the SRM(Solid Rocket Motor)is not easy to adjust th thrust due to the difficulty of th fuel flow control by its combustion behavior even its configuration is simple. This difficulty can be partly solved by changing th size or the configuration of the propellant grain. In this study a proper grain configuration of a small solid rocket is selected through both the theoretical design and the experimental tests.

  • PDF

Performance Evaluation of C/SiC Composites (C/SiC 복합재료의 내열성능 평가)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.185-188
    • /
    • 2007
  • The main objective of this research effort was to develope the performance of C/SiC composites manufactured by LSI (Liquid Silicon Infiltration) method for solid and liquid rocket propulsion system and ensure the performance analysis technique. The various carbon preform were manufactured by filament winding, tape rolling, involute layup and stack molding process. For the best performance of thermal and mechanical properties, many process conditions were tested and selected by varying preform, the content of SiC, temperature, impregnation resin and chemical vapour reaction. In conclusion, the high performance and reliability of C/SiC composite were proved for solid and liquid rocket propulsion system. And the performance analysis technique related to mathematical ablation model was originated.

  • PDF

Validation of the Aerodynamic drag model in the multi-phase flow analysis

  • Morisaki, Masao;Shimada, Toru;Hanzawa, Masahisa;Kat, Takashi;Yoshikawa, Takashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.365-368
    • /
    • 2004
  • The multi-phase flow analysis in a solid rocket motor is very important when performing the performance of a motor, and prediction of nozzle ablation. However, only in consideration of regular power, it has analyzed as power which a metal particle receives from a flow until now. We conduct analysis and an experiment about the virtual mass clause which will influence at the place where acceleration is big. We aim at the improvement in accuracy of multi-phase flow analysis from the result.

  • PDF

Numerical and Experimental Study on Infrared Signature of Solid Rocket Motor (고체로켓모터의 적외선 신호에 관한 수치적·실험적 연구)

  • Kim, Sangmin;Kim, Mintaek;Song, Soonho;Baek, Gookhyun;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.62-69
    • /
    • 2014
  • Infrared signature of rocket plume plays an important role for detection, recognition, tracking and minimzing for low observability. Infrared signatures of rocket plume with reduced smoke propellant and smokeless propellant are measured. In order to estimate the infrared signature of rocket plume, CFD analysis for flow structure of plume is performed, and layered integration method for estimating of infrared signature is used. Numerical and experimental results were in good agreement. Both propellants had similar infrared signature. Strong peak at $4.3{\mu}m$ region in the experimental results is appeared due to experimental error arising from the calibration procedure.