• Title/Summary/Keyword: Rock wool

Search Result 65, Processing Time 0.02 seconds

Evaluation of the Dynamic Stiffness and Heavy-weight Floor Impact Sound Reduction by Composition of Resilient Materials (완충재 구성방법에 따른 동탄성계수 및 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.247-254
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS(styrofoam), recycled urethane types, EVA(ethylene vinylacetate) foam rubber, foam PE(polyethylene). glass fiber & rock wool, recycled tire, foam polypropylene. compressed polyester, and other synthetic materials. In this study, we tested dynamic stiffness of resilient material and floor impact sound reduction characteristic to a lot of kinds of resilient materials. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And the test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

Resistance to Root Penetration of Root Barrier for Green Roof System (옥상녹화용 방근층 구성재료의 방근성능에 관한 실험적 연구)

  • Kim, Hyun-Soo;Jang, Dae-Hee;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.123-129
    • /
    • 2008
  • The purpose of this study is to test performances of 14 types of root barrier materials by applying testing plant: and soils suitable for weather and natural features of Korea. For testing Plants, Plioblastus pygmaed Mitford A and Pyracantha angustifolia have been selected. For testing soil, mixture of pearlite and peat moss in 3:1 ratio Testing container has been fabricated with duplicated structure having inner and outer containers. And the outer container has 2 hinges on its side wall to allow opening and closing. Wet rock wool with 50mm in thickness has been inserted between inner and outer containers to allow root to penetrate through root barrier material and continue to grow. We planted 12 Plioblastus pygmaed Mitford A. and 4 Pyracantha angustifolia per one testing container. Three testing samples have been made for 1 type of root barrier material, which become a total 42 specimens. Planted testing samples have been installed within the greenhouse, which will be observed regularly for 2 years from now on. We started test from July 11, 2008 and had performed intermediate observations every month for initial 3 months. From the 3rd intermediate observation on Sept. 18, we confirmed that 6 types of roe barrier materials have penetrated roots. Even though two types of them have been generally used as root barrier materials for roof planting system, all of three testing samples have a lot of penetrated roots. This result proves that it is not reasonable to introduce testing methods of root barrier from Europe. USA or Japan.

Examination Conditions of Root Barrier for Green Roof System and Result of Intermediate Observation of Three Months against Representative Root Barrier (옥상녹화용 방근층의 방근성 시험조건 설정 및 주요 방근소재에 대한 3개월간의 중간관찰 결과)

  • Shin, Yun-Ho;Jang, Dae-Hee;Kim, Hyun-Soo;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.245-249
    • /
    • 2008
  • The purpose of this study is to test performances of 14 types of root barrier materials by applying testing plants and soils suitable for weather and natural features of Korea. For testing plants, Plioblastus pygmaed Mitford A. and Pyracantha angustifolia have been selected. For testing soil, mixture of pearlite and peat moss in 3:1 ratio(volume). Testing container has been fabricated with duplicated structure having inner and outer containers. And the outer container has 2 hinges on its side wall to allow opening and closing. Wet rock wool with 50mm in thickness has been inserted between inner and outer containers to allow root to penetrate through root barrier material and continue to grow. We planted 12 Plioblastus pygmaed Mitford A. and 4 Pyracantha angustifolia per one testing container. Three testing samples have been made for 1 type of root barrier material, which become a total 42 specimens. Planted testing samples have been installed within the greenhouse, which will be observed regularly for 2 years from now on. We started test from July 11, 2008 and had performed intermediate observations every month for initial 3 months. From the 3rd intermediate observation on Sept. 18, we confirmed that 6 types of root barrier materials have penetrated roots. Even though two types of them(EDPM Sheet, Polyethylene Sheet) have been generally used as root barrier materials for roof planting system, all of three testing samples have a lot of penetrated roots. This result proves that it is not reasonable to introduce testing methods of root barrier from Europe or Japan.

  • PDF

Effect of Blending Rate of Waste Rockwool in Nursery Media on Growth of Marygold Plug Seedlings (육묘용 상토내의 폐암면 혼합비율이 메리골드 플러그묘의 생육에 미치는 영향)

  • Jun, Ha-Joon;Hwang, Jin-Gyu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The experiment has investigated the effects of blending rate of waste rockwool in nursery media on growth of Marygold 'Yellow boy' plug seedlings. A commercial plug medium containing 10% zeolite, 10% vermiculite, 5% perlite, 10% peatmoss and 65% cocopeat was used as the control, and the other media compounded with 10% of zeolite, vermiculite, perlite and peatmoss and 10, 30, and 50% of waste rock-wool. There was not significant difference in germination rate ot Marygold between treatments. Plant height, number of leaves, stem diameter and leaf area were higher in commercial plug medium and compound nursery media containing 50% of waste rockwool than 30 or 10% of waste rockwool. Fresh weight and dry weight of shoot and root increased in the treatment of commercial plug medium and the medium of 50% waste rockwool than 10 and 30% of waste rockwool. These results suggested the possibility of utilization of waste rockwool for medium components of plug seedlings.

A Comparative Study of Indigo Dyes and Dyeing in 19th Century Korea and England

  • Kim, Soon-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.1933-1946
    • /
    • 2010
  • This paper is a comparative analysis of the $19^{th}$ century practice of indigo dyes and dyeing in Korea and England. From over hundreds species of indigo plants in the world, it was dyer's knotweed and woad that were cultivated in Korea; however, the only indigo plant grown in England was woad. Indigo dye was produced in the form of damp indigo sediment (jeon) in Korea; however, imported indigo (as a main dye) and couched woad (as an additional dye) were indigo dyes used in England. There existed three kinds of indigo vats, the ice vat, ash-water vat, and indigo sediment (jeon) vat, in Korea. The fresh leaves of indigo were used for both the ice vat and ash-water vat. The ice vat was very convenient for preparation, but had a weakness in the inability to produce a very deep shade of blue. The ash-water vat and indigo sediment (jeon) vat were in use for producing a very deep shade of blue. The indigo sediment Goon) vat was employed presumably only by professional dyers. The indigo vat practiced in England was categorized into two types; one was woad-indigo vat, and the other was an indigo powder vat prepared by using imported indigo rock. There was a tendency to adopt different kinds of indigo vats according to the material to be dyed. The woad-indigo vat was employed for the dyeing of wool. A few of chemical vats with imported indigo were adopted, especially for the dyeing of cotton. Indigo dyers in 19th century Korea were differentiated from the rest of the dyers. They managed the growing of indigo plants as well as the production of indigo sediment (jeon). Woad dyers in 19th century England handled woolen cloth as well as worsted and woolen yarn in general. However, they sometimes dyed silk skein as well. They produced several colors such as black, blue, slates, grays, by using both woad and imported indigo.

Concentration Characteristics of Indoor and Outdoor Airborne Total Fiber Particles and Identification of Asbestos in Gyeongnam Provinces (경남지역의 실내외 공기 중 총섬유 입자의 농도특성 및 석면 입자의 확인)

  • Park, Hee-Eun;Park, Jeong-Ho;Kim, Hyoung-Kab
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • Objectives: The aim of this study is to identify concentration characteristics of indoor and outdoor airborne total fiber particles and asbestos in Gyeongnam Provinces. Methods: This study investigated concentration characteristics of indoor fiber particles from 748 schools and 38 public facilities as well as outdoor particles from 11 sites through PCM (phase contrast microscope). SEM/EDX (scanning electron microscope/energy dispersive using X-ray analysis) was used to obtain physicochemical information of asbestos fiber particles. The study identified asbestos rate in the 15 samples from indoor and outdoor airborne total fiber particles. Results: 1. The average indoor airborne concentrations of total fiber particles were $0.0011{\pm}0007$ f/cc in schools and $0.0015{\pm}0007$ f/cc in public facilities by PCM. Over 90% of the fiber particles were identified as single fibers. 2. The average outdoor airborne concentrations of total fiber particles were $0.0007{\pm}0002$ f/cc, and they were lower than those of indoor airborne concentrations. 3. The results showed that the form of asbestiform was diverse as skein of thread like form and long needle, which was relatively narrower than that of glass fiber and rock wool. 4. The results of SEM/EDX analysis of 15 areas where total fiber particle was relatively high showed that the form was rather similar to that of asbestos, but chemical composition was proven to be non-asbestos. Conclusions: The concentration of indoor and outdoor airborne total fiber particles of Gyeongnam Provinces satisfied the IAQ (Indoor air quality) level of 0.01 f/cc and asbestos was not found in most of the samples by SEM/EDX.

Economics and Ground Cover Growth Characteristics of a New Method of Shallow Soil Artificial Foundation Planting (저토심 인공지반 녹화공법의 경제성 및 도입 가능한 지피식물의 생육특성)

  • Choi, Jin-Woo;Kim, Hag-Kee;Lee, Kyong-Jae;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.5
    • /
    • pp.98-108
    • /
    • 2009
  • The purpose of this study is to analyze the characteristics of limited methods, economics and breeding appropriateness of native and imported ground cover plants in the methodology of a shallow soil rooftop garden. The new shallow soil rooftop gardening method uses a total of 13cm in soil thickness, including 4.5cm of top soil on a 7.5cm rock-wool-mat stacked onto a 1cm roll-type-draining plate. The total construction cost for each method of soil level within the design price standard for SEDUM BLOCK is 89,433won/$m^2$, and for DAKU is 92,550won/$m^2$. By comparing those two methods, the construction cost of the shallow soil artificial foundation methodology is 45,000won/$m^2$; this shows the new method is 50% less expensive than the existing method of shallow soil rooftop gardening. The experiment was executed on the rooftop of the Korean National Housing Corporation to ensure validity of the shallow soil artificial foundation planting, and the sample plants which were imported and grown now in native covering. A list investigating the growing plants was made of the cover rate in each plant class, both while alive and the dry plant weight. The native ground cover plants, Sedum kamtschaticum, Sedum middendorffianum, Allium senescens, Sedum sarmentosum, Aquilegia buergariana, and Caryopteris incana increased the cover rate, live weight and dry weight in the shallow soil artificial foundation method. Among the imported cover plants, Sedum sprium and Sedum reflexum, the cover rate increased and growth conditions improved. However, some species needed weed maintenance. After examination with the less expensive shallow soil artificial foundation method and growth analysis, it was found that rooftop gardens are a low-cost option and the growth of plants is great. This result shows the new method can contribute to the proliferation of rooftop gardens in urban settings.

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

Analysis of Moisture Characteristics in Rockwool Slabs using Time Domain Reflectometry (TDR) Sensors and Their Applications to Paprika Cultivation (TDR 센서를 이용한 암면 슬라브 수분 특성 분석 및 파프리카 재배의 적용 예)

  • Park, Jong-Seok;Tait, NguyenHuy;An, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2009
  • To investigate the characteristics of moisture content (MC), moisture distribution and starting point of drainage in a rockwool slab culture, time domain reflectometry (TDR) sensors were used in a drip irrigation system. MC values ($0{\sim}100%$) measured by TDR sensors in a slab were compared to those by loadcells. Seventy two seedlings of paprika (Capsicum annuum L.) were cultured for $5{\sim}6$ months in a green-house and the starting point of irrigation was determined by the average value of three TDR sensors which were inserted diagonally across the slabs under the plants. MCs as a standard for starting point of irrigation by TDR were determined with 40%, 50%, and 60%. Distribution of MCs in a slab measured with five TDR sensors equally spaced from two irrigation points were not much different when the MC in the slab increased from zero to saturation point. The saturated MCs in the slab were presented at $58{\sim}65%$ and the drain was started when the MC became around $50{\sim}55%$. At the saturated MC in the slab, TDR sensors presented 100% but the values from the loadcell showed 90% at the same time. However, measurement errors between two methods for MC remarkably decreased with a decrease in the MC in a slab. Especially when the MC was maintaining below 60%, the errors between TDR and loadcell methods for measuring MC in the rock-wool slab were less than 5%. There were no significant differences in number of fruits and fresh and dry weights of fruits when they were cultured under the different MC conditions with three irrigation regimes (40%, 50%, and 60%). These results indicated that the MC control by TDR sensors in a rock-wool based paprika culture can be suggested as a method to determine the starting point of irrigation for a soilless culture system.

Effect of the Nematode Sterilization of Nursery Medium using QRD Microwave in the Plant Factory (QRD 마이크로파를 이용한 식물공장용 배지의 멸균 효과)

  • Kim, Jin Hyun;Kim, Tae Wook;Lee, Keun Woo;Ha, Yu Shin;Lee, Jae Hyun;Kim, Kyung Min
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.100-107
    • /
    • 2013
  • Unlike general microwave, QRD (Quadratic Residue Diffusor) Microwave used in this study is known as a new technology that enhances the sterilization effect with low power because it is possible to induce the average sterilization by changing wavelength phase difference. Therefore, basic research was conducted on the function that could sterilize culture media for plant factory by using environmentally friendly and low energy consuming QRD Microwave. The results are as follows: It was confirmed that there was no external deformation in the polyurethane foam and rock wool medium when changing the microwave level between 2 and 8 kW in different water content of culture media. However, PDA solid media at 2 kW were not dissolved in 60 and 180 seconds. All of the media were dissolved in other processing. There was little difference in the microwave irradiation level and surface temperature of the strain according to the processing time between Bacillus sp. and Burkholderia sp. In the sterility test according to the microwave irradiation level and processing time, it was confirmed that both Bacillus sp. and Burkholderia sp. grew in the microwave level 2 kW regardless of time. In the microwave level 6 kW, all experimental groups except the processing of Burkholderia sp. for 60 seconds were sterilized, and all of Bacillus sp. was killed in the all experimental groups. In the microwave level 8 kW, it was confirmed that both Bacillus sp. and Burkholderia sp. were sterilized regardless of time. The temperature in microwave-processed media after contaminating strains to each medium was maintained at more than 100 in polyurethane foam and rock wool medium after 60 seconds. In general, it was shown that it was possible to sterilize after 60 seconds. Therefore, it is considered that Bacillus sp. and Burkholderia sp. which are the biggest problems in the plant factory can be adequately sterilized by QRD Microwave used in this study.