Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System

바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리

  • Lee, Eun Ju (Department of Chemical Engineering, Kyungpook National University) ;
  • Park, Sang Won (Department of Food Engineering, Daegu University) ;
  • Nam, Dao Vinh (Department of Chemical Engineering, Daegu University) ;
  • Chung, Chan Hong (Department of Chemical Engineering, Daegu University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University)
  • Received : 2010.05.27
  • Accepted : 2010.06.11
  • Published : 2010.06.30

Abstract

In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

본 연구에서는 퇴비공장 또는 공공시설에서 발생되는 악취폐가스의 대표적인 제거대상 오염원인 암모니아의 효율적 처리를 위하여, 여러 운전 조건 하에서 동 부피의 폐타이어담체와 compost를 충전하고 반송슬러지를 고정한 바이오필터의 암모니아 제거 특성을 조사하고 바이오필터공정의 적정운전조건을 구축하였다. 암모니아를 함유한 폐가스의 처리를 위하여 바이오필터를 30일(2회/1일의 회수로 총 60회 실험) 동안 약 $30^{\circ}C$의 온도조건 하에서 암모니아부하를 $2.18g-N/m^3/h$부터 $70g-N/m^3/h$ 까지 증가시키면서 운전하였다. 바이오필터를 가동하여 I부터 IV 단계까지는 암모니아 제거율이 거의 100%로서, 암모니아부하가 $17g-N/m^3/h$에 이르기까지 거의 모든 암모니아가 제거되었으나, 바이오필터 운전 V 단계에서 암모니아부하를 약 $35g-N/m^3/h$로 증가시켰을 때에 암모니아제거율은 약 80% 정도로 급락하여 암모니아 제거용량이 약 $28g-N/m^3/h$이었다. 그러나 바이오필터 운전 VI 단계에서 암모니아부하를 약 $70g-N/m^3/h$로 두 배로 증가시켰을 때에도 암모니아제거율은 80%를 유지하여 최대암모니아 제거용량이 약 $55g-N/m^3/h$에 달하였다. 이와 같이 본 연구의 최대 암모니아 제거용량은, 분뇨슬러지를 유기담체인 rock wool에 접종하고 Kim 등에 의하여 수행된 바이오필터실험의 최대 암모니아 제거용량인 $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$)보다 다소 우월하였다. 그러나 본 연구의 암모니아 질소 임계부하는 Kim 등에 의하여 수행된 바이오필터실험의 암모니아 질소의 임계부하인 $810g-N/m^3/day$(i.e., $33.75g-N/m^3/h$)에 미치지 못하였다. 본 연구의 최대 암모니아 제거용량이 Kim 등보다 우월한 이유는 Kim 등에 의하여 사용된 미생물담체보다 본 연구에서 사용한 미생물담체인 폐타이어담체의 코코넛 활성탄분말로 도포된 표면 및 발달된 내부공극이 각각 질산화 및 탈질 미생물이 고정화되기 더욱 쉬운 환경을 제공하기 때문이라고 사료된다.

Keywords

References

  1. Hirai, M., Ohtake, M. and Shoda, M., "Removal Kinetics of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Peat Biofilters," J. Ferment. Bioeng., 70, 334-339(1990). https://doi.org/10.1016/0922-338X(90)90145-M
  2. Chris, E., Chris, Q., Peter, B., Jay, W. and Dirk, A., "Odor and Air Emissions Control Using Biotechnology for Both Collection and Wastewater Treatment Systems," Chem. Eng. J., 113, 93-104(2005). https://doi.org/10.1016/j.cej.2005.04.007
  3. Islander, R. I., Devinny, J. S., Mansfield, F., Postyn, A. and Shin, H., "Microbial Ecology of Crown Corrosions in Sewers," J. Environ. Eng., 117, 751-770(1990).
  4. Oyarzun, P., Arancibia, F., Canales, C. and Aroca, G. E., "Biofiltration of High Concentration of Hydrogen Sulfide Using Thiobacillus thioparus," Process Biochem., 39, 165-170(2003). https://doi.org/10.1016/S0032-9592(03)00050-5
  5. Cho, K.-S., Ryu, H. W. and Lee, N. Y., "Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus Thioxidants," J. Biosci. Bioeng., 90, 25-31(2000). https://doi.org/10.1016/S1389-1723(00)80029-8
  6. Wani, A. H., Branion, M. R. and Lau, A. K., "Effects of Periods of Starvation and Fluctuating Hydrogen Sulfide Concentration on Biofilter Dynamics and Performance," J. Hazard. Mater., 60, 287-303(1998). https://doi.org/10.1016/S0304-3894(98)00154-X
  7. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biodegradation of Hydrogen Sulfide by a Laboratory-scale Immobilized Pseudomonas putida CH11 Biofilter," Biotechnol. Prog., 12, 773-778(1996a). https://doi.org/10.1021/bp960058a
  8. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Operation Optimization of Thiobacillus thioparus CH11 in a Biofilter for Hydrogen Sulfide Removal," J. Biotechnol., 52, 31-38(1996b). https://doi.org/10.1016/S0168-1656(96)01622-7
  9. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biological Elimination of $H_2S$ and $NH_3$ from Wastegases by Biofilter Packed with Immobilized Heterotrophic Bacteria," Chemosphere, 43, 1043-1050(2001). https://doi.org/10.1016/S0045-6535(00)00211-3
  10. Cox, H. H. J. and Deshusses, M. A., "Co-treatment of $H_2S$ and Toluene in a Biotrickling Filter," Chem. Eng. J., 87, 101-110(2002). https://doi.org/10.1016/S1385-8947(01)00222-4
  11. Shareefdeen, Z., Herner, B., Webb, D., Verhaeghe, L. and Wilson, S., "An Odor Predictive Model for Rendering Applications," Chem. Eng. J., 113, 215-220(2005). https://doi.org/10.1016/j.cej.2005.03.006
  12. Cox, H. H. J., "Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation," Biotechnol. Bioeng., 62, 216-224(1999). https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<216::AID-BIT12>3.0.CO;2-4
  13. Yang, Y. and Allen, E. R., "Biofiltration Control of Hydrogen Sulfide 1. Design and Operational Parameters," J. Air Waste Manage. Assoc., 44, 863-868(1994).
  14. Kazutaka, K., Takashi, O., Mitihiro, Y., Akane, K., Takako, N., Sigenori, M. and Tomoko, N., "Emissions of Malodorous Compunds and Greenhouse Gases from Composting Swine Feces," Bioresour. Technol., 56, 265-271(1996). https://doi.org/10.1016/0960-8524(96)00047-8
  15. Malhaulter, L., Gracian, C., Roux, J-.C., Fanlo, J-.L. and Cloirec, P. L., "Biological Treatment Process of Air Loaded with An Ammonia and Hydrogen Sulfide Mixture," Chemosphere, 50, 145-153(2003). https://doi.org/10.1016/S0045-6535(02)00395-8
  16. Kim, N.-J., Hirai, M. and Shoda, M., "Comparison of Organic and Inorganic Packing Materials in the Removal of Ammonia Gas in Biofilters," J. Hazard. Mater., B72, 77-90(2000).
  17. Chen, Y.-X., Yin, J. and Wang, K.-X., "Long-term Operation of Biofilters for Biological Removal of Ammonia," Chemosphere, 58, 1023-1030(2005). https://doi.org/10.1016/j.chemosphere.2004.09.052
  18. Lim, K.-H., Jung, Y.-J., Park, L. S. and Min, K.-S., "Preparation and Characteristics of Media from Waste Tire Powder for Wastewater Treatment," HWAHAK KONGHAK, 39(5), 600-606(2001).