The Effect of the Wettability of Solid Surface on Printing Pattern in Screen Printing

스크린 인쇄 공정에서 고체면의 젖음성이 인쇄형상에 미치는 영향

  • Park, Jungkwon (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Chongyoup (Department of Chemical and Biological Engineering, Korea University)
  • 박중권 (고려대학교 화공생명공학과) ;
  • 김종엽 (고려대학교 화공생명공학과)
  • Received : 2009.12.18
  • Accepted : 2010.03.24
  • Published : 2010.06.30

Abstract

The interfacial hydrodynamic issues in the screen printing are experimentally investigated by using model inks that are prepared by dispersing alumina nanoparticles in water. The printing patterns of the inks that are passed through differing geometrical shapes of screen on solid surfaces with differing wettability are not solely determined by the pattern on the screen. The dynamic contact angle cannot solely explain the physics of the problem, either. The difference between the screen and printing patterns was not the same for concave and convex corners. Especially the elasticity of ink affects the edge shape.

스크린 프린팅에서의 계면유체역학적인 문제를 알루미나 나노입자를 물에 분산시킨 점성과 탄성을 갖는 모델잉크를 대상으로 실험적으로 연구하였다. 형상이 다른 스크린 패턴을 통과한 잉크를 젖음성이 다른 고체면에 인쇄될 때 인쇄형상에 대하여 연구한 결과 고체면에의 인쇄 형상은 단순히 스크린 패턴이나 평형상태의 접촉각에 의하여만 결정되지 않음을 알 수 있었다. 또한 오목한 모서리와 볼록한 모서리의 차이는 점도에 따라 달라짐을 볼 수 있었다. 특히 잉크의 탄성이 테두리의 형태에 영향을 미치는 것을 알 수 있었다.

Keywords

References

  1. Mallik, S., Schmidt, M., Bauer, R. and Ekere, N. N., Influence of Solder Paste Components on Rheological Behaviour, 2nd Electronics Systemintegration Technology Confererce Greenwich, UK, 1135-1140(2008).
  2. Pan, J., Tonkay, G. L. and Quintero, A., Screen printing Process Design of Experiments for Fine Line printing of Thick Film Ceramic Substrate, J. Electron. Manuf., 9, 203-213(1999). https://doi.org/10.1142/S096031319900012X
  3. Lin, H. W., Chang, C. P., Hwa, W. H. and Ger, M. D., The rheological behaviors of screen-printing pastes, J. Mater. Process. Technol., 197, 284-291(2008). https://doi.org/10.1016/j.jmatprotec.2007.06.067
  4. Riemer, D. E., Analytical Engineering Model of the Screen printing Process: Part 1, Solid State Technol., 107-111(1988).
  5. Riemer, D. E., Analytical Engineering Model of the Screen printing Process: Part 2, Solid State Technology., 85-90(1988).
  6. Owczarek, J. A. and HowLand, F. L., A study of the Off-Contact Screen printing Process-Part 1: Model of the printing Process and Some Results Derived From Experiments, IEEE Transaction on components, hybrids, and manufacturing technology., 6, 358-367(1990).
  7. Owczarek, J. A. and HowLand, F. L., A study of the Off-Contact Screen printing Process- Part 2:Analysis of the Model of the printing Process, IEEE Transaction on components, hybrids, and manufacturing technology., 6, 368-375(1990).
  8. Claypole, T. C., Gethin, D. T. and Danias, J., Dot gain and ink Transfer behavior in the Screen printing Process, Surface Coatings International., 222-229(1997).
  9. Ulman, A., An introduction to ultrathin organic film from langmuir-blodgett to self-assembly, Academic Press, New York, 237-304(1991).
  10. Yasseri, A. A., Sharma, S. and Kamins, T. I., Alkylsiloxane self-assembled monolayer formation guided by nanoimprinted Si and $SiO_2$ templates, Appl. Phys. Lett., 89, 153121(2006). https://doi.org/10.1063/1.2360920
  11. Xue, C. Y. and Yang, K. L., Chemical modifications of inert organic monolayers with oxygen plasma for biosensor applications, Langmuir, 23, 5831-5835(2007). https://doi.org/10.1021/la070076+