• Title/Summary/Keyword: Rock classification method

Search Result 126, Processing Time 0.023 seconds

Applicaton of a Geomechanical Classification for Rock Slope (암반 사면에 대한 새로운 암반 분류안의 적용)

  • 김대복
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.215-227
    • /
    • 1994
  • Rock Mass classifications have been developed in many European countries. The most widely used classification methods are the Rock Mass Rating (RMR) system proposed by Bieniawski(1973) and the Q-system developed By Barton et al. (1974). These methods are also adopted at many mountain tunnels and subway sites in our country. Here, a geomechanical classification for slopeds in rock, the "Slope Mass Rating"(SMR) is presented for the preliminary assessment of slope stabiliyt. This method can be applied to excavation and support design in the front part of tunnel and cutting area as a guide line and recommendation on support methods which allow a systemmetic use of geomechanical classification for rock slopes.

  • PDF

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

A study on the correlation between the result of electrical resistivity survey and the rock mass classification values determined by the tunnel face mapping (전기비저항탐사결과와 터널막장 암반분류의 상관성 검토)

  • 최재화;조철현;류동우;김학규;서백수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.265-272
    • /
    • 2003
  • In this study, the rock mass classification results from the face mapping and the resistivity inversion data are compared and analyzed for the reliability investigation of the determination of the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system based on RMR(rock mass rating) are calculated. Kriging method as a post processing technique for global optimization is used to improve its resolution. The result of correlation analysis shows that the geological condition estimated from 2D electrical resistivity survey is coincident globally with the trend of rock type except for a few local areas. The correlation between the results of 3D electrical resistivity survey and the rock mass classification turns out to be very high. It can be concluded that 3D electrical resistivity survey is powerful to set up the reliable rock support type.

  • PDF

A Geostatisitical Study Using Qualitative Information for Multiple Rock Classification II. Application (다분적 암반분류를 위한 정성적 자료의 지구통계학적 연구- II. 응용)

  • 유광호
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • The application of a multiple rock classification method, which is a generalization of a binary rock classification, is studied in this paper. In particular, this paper shows how to incorporate qualitative data through a case study. The method suggested in this paper can be effectively used for a systematic multiple rock classification such as RMR system developed by Bieniawski. It will be very useful for rock classifications. In addition, it is known that the expected cost of errors can be atopted to indicate how well a investigation plan is made.

  • PDF

Suggestion of New Rock Classification Method Using the Existing Classification Method (기존의 암반분류법의 조합에 의한 새로운 암반평가법의 제안)

  • SunWoo Choon;Jung Yong-Bok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Rock mass classification systems such as RMR and Q system have been widely served as a simple empirical approach for the design of various rock mass structures in the stage of site survey as well as under the construction. For the RQD determination, the boring is partially carried out and what is more, the survey boring is not normally carried out under construction. Therefore RQD is frequently determined by empirical method or indirect method. Since it is difficult to determine the discontinuity characteristics such as RQD, spacing, persistence, filling and so on, it is essential to develop suitable and simple systems without drilled core and a cert 없 n number of representative parameters. One of the primary objectives of the classification systems for a practicing engineer has been to make it simple to use as a preliminary design tool for the structures in rock mass. In the present study, the modifications for both the RMR and GSI system are suggested by authors to introduce new classification system as well as to improve the scope of some of the existing classification systems for a practicing engineer.

A Study on Rock Mass Classification in Quartzite Rock Bed with Consideration of Joint Frequency (절리빈도를 고려한 규암 암반에서의 합리적인 암판정 연구)

  • Lee, Su-Gon;Kim, Min-Sung;Lee, Kyung-Soo;Lee, Chi-Hong
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.102-108
    • /
    • 2007
  • Generally, the method used most widely for rock mass classification is considering the rock strength and development of joint frequency. However, if rock bed has micro-crack and long joint, this method is not rational. Therefore, the difficulties of excavation in the rock bed with complicated geological condition are decided by combining joint frequency. indoor tests (uniaxiall compressive strength, point load test, indoor elastic wave velocity, etc.) and field seismic refraction survey, and the rock mass classification should be implemented by considering their interrelationship.

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

Rock Mass Classification and Its Use in Blast Design for Tunneling (암분류기법과 터널굴착을 위한 발파설계에의 활용)

  • Ryu Chang-Ha;SunWoo Choon;Choi Byung-Hee
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Building tunnels means dealing with what rock is encountered. Relocation of the site of the underground structure is rarely possible. Tunneling engineers and miners have to cope with the quality of the rock mass as it is. Different tunneling philosophies and different rock classification methods have been developed in various countries. Most of the rock classification methods are based on the response of the rock mass to the excavation. Tunnel support requirements could be assessed analytically, supplemented by rock mass classification predictions, and verified by measurements during construction. Rock mass classifications on their own should only be used for preliminary, planning purposes and not for final tunnel support. Design of blast pattern in tunneling projects in Korea is also mostly prepared according to the general rock classification methods such as RMR or Q. They, however, do not take into account the blast performance, and as a consequence, produce poor blasting results. In this paper, the methods of general rock classification and blast design for tunnel excavation in Korea are reviewed, and efforts to develop a new classification method, reflecting the blasting performance, are presented.

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai;Li, Changfeng;Chen, Zeng;Liao, Zefeng;Zhao, Guangming;Shi, Feng;Yu, Weijian
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2020
  • Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication Methods (현장암반 평가에 관한 제안 및 암반분류법들간의 상관관계 고찰)

  • Kim, Hong-Pyo;Chang, Ho-Min;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.133-147
    • /
    • 2010
  • A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication MethodsThe purpose of this study is to find out rock mass classification method which is practically applicable to a field and to consider a correlation between the new method and the old method. Rock mass is an aggregate of separated blocks. To express the aggregate, the properties of both intact rock and rock mass should be considered. In this study, therefore, parameters for rock mass description are classified into rock strength and rock structure. Indices for parameters evaluation are obtained from old method and the strength and structure property of rock is described by using those indices. Value of 25 is allocated to each parameter obtained. $RMR_{basic}$ =0.86(X=Method)+14.47 is derived between $RMR_{basic}$ and this study and $RMR^*$ = 0.87(X-Method)+9.20 is derived between revised RMR and this study. Coefficient of determination is $R^2$=0.841 and $R^2$=0.846 each.