A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication Methods

현장암반 평가에 관한 제안 및 암반분류법들간의 상관관계 고찰

  • 김홍표 (태조엔지니어링) ;
  • 장호민 (조선대학교 에너지자원공학과) ;
  • 강추원 (조선대학교 에너지자원공학과) ;
  • 고진석 (조선대학교 에너지자원공학과)
  • Received : 2010.12.20
  • Accepted : 2010.12.26
  • Published : 2010.12.31

Abstract

A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication MethodsThe purpose of this study is to find out rock mass classification method which is practically applicable to a field and to consider a correlation between the new method and the old method. Rock mass is an aggregate of separated blocks. To express the aggregate, the properties of both intact rock and rock mass should be considered. In this study, therefore, parameters for rock mass description are classified into rock strength and rock structure. Indices for parameters evaluation are obtained from old method and the strength and structure property of rock is described by using those indices. Value of 25 is allocated to each parameter obtained. $RMR_{basic}$ =0.86(X=Method)+14.47 is derived between $RMR_{basic}$ and this study and $RMR^*$ = 0.87(X-Method)+9.20 is derived between revised RMR and this study. Coefficient of determination is $R^2$=0.841 and $R^2$=0.846 each.

본 연구에서는 암반분류를 현장에서 바로 실시할 수 있는 암반분류법을 도출하고 도출된 분류법과 기존분류법간의 상관관계를 고찰하는데 그 목적이 있다. 암반 묘사를 위한 분류인자를 먼저 암반강도와 암반구조로 나누었으며, 암반강도는 점하중강도와 절리상태, 암반구조는 RQD와 절리간격을 통하여 평가하였다. 변수의 평가를 위한 지표는 기존의 분류법에서 획득하여 이용하였으며, 이를 통하여 암반의 강도 특성과 구조적 특성을 모두 나타내었다. 도출된 각 각의 변수에는 25점의 배점을 할당하였다. $RMR_{basic}$과 본 연구와의 상관관계는 $RMR_{basic}$ = 0.86(X-Method)+14.47, 수정 RMR과 본 연구와의 상관관계는 $RMR^*$ = 0.87(X-Method)+9.20로 나타났다. 결정계수는 각각 $R^2$=0.841, $R^2$=0.846으로 나타났다.

Keywords

References

  1. 강병무, 박인식, 오대열, 이수곤, 2004, 암반의 조사와 적용(암반분류에 대한 토의), (불연속면조사),(풍화조사), (사)대한지질공학회, 1, pp. 1-23.
  2. 박철환, 박찬, 신중호, 2006, 암반등급 분류법들의 비교연구, 터널과 지하공간(한국암반공학회지), Vol.16, No. 3, pp. 203-208.
  3. 선우춘 외, 2001, 암반분류방법간의 상관관계에 대한 고찰, 한국지반공학회논문집, Vol. 17, No. 4, pp.127-134.
  4. 선우춘, 정용복, 2006 기존의 암반분류법의 조합에 의한 새로운 암반평가법의 제안, 화약.발파(대한화약발파공학회지), Vol. 24, No. 1, pp. 21-28.
  5. 이수곤, 이송, 1995 점하중강도(Point Load Test)를 이용한 일축압축강도 추정방법, 대한토목학회, Vol.15, No. 4, pp. 1015-1027.
  6. Barton, N, 1978, Suggested methods for the quantitative description of discontinuities in rock masses, ISRM Commission on Standardization of Laboratory and Field Tests, Int. J. Rock. Mech. Sci. & Geomech. Abstr., Vol. 15. pp. 319-368. https://doi.org/10.1016/0148-9062(78)91472-9
  7. Bieniawski, Z.T., 1973, Engineering Classification of jointed Rock Masses. The Civil Engineer in South Africa, Vol. 15, pp. 335-344.
  8. Bieniawski, Z.T., 1989, Rock mechanics design in mining and tunnelling, A.A.Balkema, Rotterdam, pp. 97-135.
  9. Singh, B. & R.K. Goel, 1999, Rock Mass Classification ; A Practical Approach in civil Engineering, Elsevier, pp. 3, 17-24, 34-46, 62-83.
  10. Cameron-Clarke, I.S. and S. Budavari, 1981, Correlation of Rock Mass Classification Parameters Obtained from borecore and insitu observations, Engineering Geology, Vol. 17, pp. 19-53. https://doi.org/10.1016/0013-7952(81)90019-3
  11. Geotechnical Engineering Bureau, 2006, ROCK CORE EVALUATION MANUAL.
  12. Barton, N., R. Lien and J. Lunde, 1974, Engineering Classification of Rock masses for Design of Tunnel Support, Rock Mechanics, Vol. 6, pp. 189-236. https://doi.org/10.1007/BF01239496