Suggestion of New Rock Classification Method Using the Existing Classification Method

기존의 암반분류법의 조합에 의한 새로운 암반평가법의 제안

  • Published : 2006.06.01

Abstract

Rock mass classification systems such as RMR and Q system have been widely served as a simple empirical approach for the design of various rock mass structures in the stage of site survey as well as under the construction. For the RQD determination, the boring is partially carried out and what is more, the survey boring is not normally carried out under construction. Therefore RQD is frequently determined by empirical method or indirect method. Since it is difficult to determine the discontinuity characteristics such as RQD, spacing, persistence, filling and so on, it is essential to develop suitable and simple systems without drilled core and a cert 없 n number of representative parameters. One of the primary objectives of the classification systems for a practicing engineer has been to make it simple to use as a preliminary design tool for the structures in rock mass. In the present study, the modifications for both the RMR and GSI system are suggested by authors to introduce new classification system as well as to improve the scope of some of the existing classification systems for a practicing engineer.

현재 가장 많이 사용되고 있는 암반분류법인 RMR 이나 Q 분류법을 이용하여 조사단계에서 암반평가를 할 때, 평가요소의 하나인 RQD 값을 구하기 위한 시추작업이 제한적으로 이루어지고 있고, 또한 시공단계에서도 시추작업은 거의 이루어지지 않고 있는 실정이다. 실제 현장조사에서는 RQD값은 일반적으로 유추되거나 간접적인 방법을 통해서 이루어지고 있는 실정이다. 또한 암반내의 절리간격조사도 여러 군의 절리가 존재할 경우 그룹별 간격의 측정이 용이하지 않으며 불연속면의 연속성 등 불연속면의 특성에 관한 측정이 쉽지 않다는 것이다. 절리간격 요소도 설제로는 RQD와 중복되는 요소로서 시추 코아에 의존하지 않고 보다 쉽게 암반평가를 실시할 수 있는 새로운 암반분류법의 개발이 필요하다. 이를 위해서 요구되는 요소들을 측정하지 않고도 암반의 구조적인 형태와 절리의 거칠기와 변형정도로 표시되는 불연속면의 표면적인 조건만을 관찰함으로써 암반평가를 실시할 수 있는 방법인 GSI 의 요소들을 RMR 방법과 결합하여 새로운 암반분류법을 제시하고자 하는 것이다.

Keywords

References

  1. 선우춘, Karanam UM Rao, 정소걸, 전양수, 2004, 석회석 광산에서의 GSI 분류법에 의한 암반특성 연구, 한국암반공학회지, Vol. 14, No. 2, pp. 1-11
  2. Barton, N., R. Lien and J. Lunde, 1974, Engineering Classification of Rock Masses for the Design of Rock Support, Rock Mechanics, Vol. 6, pp. 189-236 https://doi.org/10.1007/BF01239496
  3. Bieniawski, Z.T., 1973, Engineering classification of rock masses, Trans. S. Afr. Inst. Civ. Eng., Vol. 15, No. 12, pp. 335-344
  4. Bieniawski, Z.T., 1989, Engineering rock mass classification, John Wiley & Sons, New York, 251p
  5. Hoek, E., 1994, Strength of rock and rock masses, ISRM News, Vol. 2, No.2, pp. 4-16
  6. Hoek, E. and E.T. Brown, 1997, Practical estimates of rock mass strength, Int. J. of Rock Mech. Min. Sci., Vol. 34, No. 8, pp. 1165-1186 https://doi.org/10.1016/S1365-1609(97)80069-X
  7. Hoek, E., P. Marinos and M. Benissi, 1998, Applicability of the geological strength index(GSI) classification for very weak and sheared rock masses-The case of Athens Schist Formation, Bull. Eng. Geol. Env., Vol. 57, pp. 151-160 https://doi.org/10.1007/s100640050031
  8. Kendorski, F.S., R.A. Cummings, Z.T. Bieniawski and E.H. Skinner, 1983, Rock mass classification for block caving mine drift support, In: Proceedings of the Fifth ISRM, Melbourne, Australia, pp. 51-63
  9. Palmstrom, A., 1982, The volumetric joint account- A useful and simple measure of the degree of jointing, 4th Int. Congress IAEG, New Delhi, pp. 221-228
  10. Romana, R.M., 1985, New adjustment ratings for application of Bieniawski classification to slopes, Proc. Int. Symp. on the role of rock mechanics, Zactecas, pp. 49-53
  11. Serafim, J.L. and J.P. Pereira, 1983, Considerations of the Geomechanics classification of Bieniawski, Proceedings of the International Symp. Eng. Geology and Underground Construction, LNEC, Lisbon, pp. l.II-33- II-42
  12. Unal, E., 1983, Design guidelines and roof control standards for coal mine roofs, Ph.D thesis, The Pennsylvania State University, University Park, 355p
  13. Weaver, J.M., 1975, Geological factors significant in the assessment of rippability, Civ. Eng. S. Afr., Vol. 17, pp. 313-316