• Title/Summary/Keyword: Robust controller ($H{\infty}$)

Search Result 359, Processing Time 0.04 seconds

A Robust $H^{\infty}$ Controller for Active Suspensions Based on a Full-Car Model (차량의 능동형 현가장치를 위한 강인한 $H^{\infty}$ 제어기 설계)

  • Park, Jong-Hyeon;Kim, Young-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.146-154
    • /
    • 2000
  • An $H\infty$ controller is designed for active suspensions of vehicles using 7-degree-of-freedom full-car model. Its performance robustness as well as stability robustness to system parameter variations and unmodelled dynamics are assured through the $\mu$-framework. The performance of the $H\infty$ controller is compared with that of a LQC controller in compute simulations. From the simulations it is found that the active suspension with the $H\infty$ controller reduces the acceleration and motion of the sprung mass in the heaving rolling and pitching directions when the car is driven on a normal road or through an asymmetric bump. The suspension stroke and the road holding capability are also improved with a relatively small level of power consumption. Overall the $H\infty$ controller shows a more robust performance than that of the LQG design.

  • PDF

ROBUST MIXED $H_2/H_{\infty}$ GUARANTEED COST CONTROL OF UNCERTAIN STOCHASTIC NEUTRAL SYSTEMS

  • Mao, Weihua;Deng, Feiqi;Wan, Anhua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.699-717
    • /
    • 2012
  • In this paper, we deal with the robust mixed $H_2/H_{\infty}$ guaranteed-cost control problem involving uncertain neutral stochastic distributed delay systems. More precisely, the aim of this problem is to design a robust mixed $H_2/H_{\infty}$ guaranteed-cost controller such that the close-loop system is stochastic mean-square exponentially stable, and an $H_2$ performance measure upper bound is guaranteed, for a prescribed $H_{\infty}$ attenuation level ${\gamma}$. Therefore, the fast convergence can be fulfilled and the proposed controller is more appealing in engineering practice. Based on the Lyapunov-Krasovskii functional theory, new delay-dependent sufficient criteria are proposed to guarantee the existence of a desired robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which are derived in terms of linear matrix inequalities(LMIs). Furthermore, the design problem of the optimal robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which minimized an $H_2$ performance measure upper bound, is transformed into a convex optimization problem with LMIs constraints. Finally, two simulation examples illustrate the design procedure and verify the expected control performance.

Robust H_$\infty$ controller based on convex parametrization with application to nonlinear boiler system (볼록 계수화법에 의해 설계된 견실한 H_$\infty$제어기의 비선형 보일러 시스템에 대한 적용)

  • 황준하;최광진;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1456-1459
    • /
    • 1997
  • In this paper, a control system using robust H.inf. controller based on convex parametrization is presented for nonlinear system with uncertainty. accounting for the time delay, noise and linearization error by frequency analysis, the suboptmal controller is designed to meet robust stability and performance for uncertainty. The desinged control system is applied to a nonlimear boiler moderl to test its performances.

  • PDF

Design of a Mixed $H_2/H_{\infty}$ PID Controller for Speed Control of Brushless DC Motor by Genetic Algorithm (유전 알고리즘에 의한 브러시리스 DC모터의 속도 제어용 혼합 $H_2/H_{\infty}$ PID제어기 설계)

  • Duy Vo Hoang;Phuong Nguyen Thanh;Kim Hak-Kyeong;Kim Sang-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.77-78
    • /
    • 2006
  • A mixed method between $H_2\;and\;H_{\infty}$ control are widely applied to systems which has parameter perturbation and uncertain model to obtain an optimal robust controller. Brushless Direct Current (BLDC) motors are widely used for high performance control applications. Conventional PID controller only provides satisfactory performance for set-point regulation. However, with the presence of nonlinearities, uncertainties and perturbations in the system, conventional PID is not sufficient to achieve an optimal robust controller. This paper presents an approach to ease designing a Mixed $H_2/H_{\infty}$ PID controller for controlling speed of Brushless DC motors and the genetic algorithm is used to solve the optimized problems. Numerical results are shown to prove that the performance in the proposed controller is better than that in the optimal PID controller using LQR approach.

  • PDF

$H{\infty}$ optimal controller robustness and performance improvement by frequency domain analysis of open loop transfer function (개루프 전달함수 주파수영역 해석에 의한 $H{\infty}$ 최적 제어기의 견실성 및 성능 개선)

  • Kim, Y.K.;Ryu, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.761-763
    • /
    • 1999
  • When the controller designed by the $H{\infty}$ control technique is applied to the object system, sometimes the controller does not satisfy the robust stability and robust performance but only satisfy the nominal performance. In this paper, we derive the region on the frequency response curve of the open-loop transfer function which satisfy the robustness and robust performance of the designed controller. We also derive the region for the suitableness of the weighting function on the frequency response curve of the weighting function. We showed that the robust stability and the robust performance of the $H{\infty}$ optimal control)or by applying the designed controller on an electromechanical actuator system could be improved by determining parameter ${\gamma}$ and weighting function gain ${\alpha}$ using the derived region.

  • PDF

Design of a robust $H_{\infty}$ controller with regional stability constraints for uncertain linear systems (불확실한 선형 시스템의 지역 안정 제한 조건을 가진 강인한 $H_{\infty}$제어기의 설계)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.747-750
    • /
    • 1996
  • This paper considers the problem of robust H$_{\infty}$ control with regional stability constraints via output feedback to assure robust performance for uncertain linear systems. A robust H$_{\infty}$ control problem and the generalized Lyapunov theory are introduced for dealing with the problem, The output feedback H$_{\infty}$ controller makes the controlled outputs settle within a given bound and the control input not to be saturated. The regional stability constraints problem for uncertain systems can be reduced to the problem for the nominal systems by finding sufficient bounds of variations of the closed-loop poles due to modeling uncertainties. A controller design procedure is established using the Lagrange multiplier method. The controller design technique was illustrated on the track-following system of a optical disk drive.ve.

  • PDF

Robust $H^{\infty}$ Control for State Delayed Linear Systems with Uncertainties (불확실하고 상태변수의 지연이 있는 시스템에 대한 $H^{\infty}$ 제어기)

  • Lee, Jae-Won;Lee, Joon-Hwa;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.328-330
    • /
    • 1993
  • In this paper, we present a robust $H^{\infty}$ controller for a state delayed system with uncertainties. The unstructured and norm bounded uncertainties enter into both the state and the input matrix, where the matching condition of the uncertainties is not assumed. A robust stabilization condition and also a robust $H^{\infty}$ stabilization condition are suggested. The robust $H^{\infty}$ controller is obtained by solving a Riccati equation which is derived from the suggested robust $H^{\infty}$ stabilization condition.

  • PDF

2 DOF robust performance controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형 시스템의 2 자유도 견실성능 제어기 설계)

  • 이갑래;정은태;최봉렬;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.43-53
    • /
    • 1997
  • A robust stability condition for linear systems with time delay in all variables and parameter uncertainties in all system matrices is derived. Robust performance condition that accounts for robust model-matching of closed loop system and disturbance rejection is also derived. Using the robust performance condition, robust $H^{\infty}$ controller and .mu.(sgructured singular value) controller with two-degree-of-freedom(2DOF) are designed. The controller structure is considered for $H^{\infty}$ controller, while uncertainity structure is considered for .mu. controller. Using the proposed method, $H^{\infty}$ and .mu. controllers for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.ce.

  • PDF

Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control (강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어)

  • Park, Chintac;Kim, In-Soo;Lee, Young-Jin;Kim, Jong-Shik;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

A Study on Power System Stability Enhancement by Robust Control of SPFC and Generators

  • Lee, Byung-Ha
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.109-114
    • /
    • 2004
  • In this paper, the H$\infty$ control method is applied in the control of SPFC and generators in order to obtain the robust stability performance of the power system. Moreover, a SPFC H$\infty$ controller based on loop shaping is designed to achieve first-rate tracking properties in addition to the robust stability. This robust control method is applied to a Ward and Hale 6-bus power system and the effects are analyzed. The MATLAB program is used for simulation of the robust controller.