• Title/Summary/Keyword: Robust Saturation Controller

Search Result 42, Processing Time 0.024 seconds

Experimental Study on Stability of Robust Saturation Controller (강인 포화 제어기의 안정성에 관한 실험적 연구)

  • Lim, Chae-Wook;Moon, Seok-Jun;Park, Youngjin;Park, Yun-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.207-213
    • /
    • 2006
  • In our previous research, we proposed a robust saturation controller which involves both control input saturation and structured real parameter uncertainties. This controller can analytically prescribed the upper and lower bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. And the availability and the effectiveness of the proposed robust saturation controller were verified through numerical simulations. In this paper, we verify the robust stability of this controller through experimental tests. Expecially, we show unstable cases of other controllers in comparison with this controller. Experimental tests are carried out in the laboratory using a two-story test structure with a hydraulic-type active mass damper.

Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller (강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어)

  • Park, Young-Jin;Moon, Seok-Jun;Lim, Chae-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.

Robust Saturation Controller for the Stable LTI System with Structured Real Parameter Uncertainties (구조적 파라미터 불확실성을 갖는 안정한 선형계에 대한 강인 포화 제어기)

  • Lim Chae-Wook;Park Young-Jin;Moon Seok-Jun;Park Youn-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.517-523
    • /
    • 2006
  • This paper is focused on a robust saturation controller for the stable linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, a robust saturation controller is newly proposed and the linear matrix inequality (LMI)-based sufficient existence conditions for this controller are presented. The controller suggested in this paper can analytically prescribe the lower and upper bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. Through numerical simulations, it is confirmed that the proposed robust saturation controller is robustly stable with respect to parameter uncertainties over the prescribed range defined by the lower and upper bounds.

Experimental Verification on Stability of Robust Saturation Controller (강인 포화 제어기의 안정성에 관한 실험적 검증)

  • Lim, Chae-Wook;Moon, Seok-Jun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.223-226
    • /
    • 2005
  • In previous research, we proposed robust saturation controller which involves both actuator's saturation and structured real parameter uncertainties. This controller can analytically prescribed the upper and lower bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. And the availability and the effectiveness of the proposed robust saturation controller were verified through numerical simulations. In this paper, we verify the robust stability of this controller through experimental tests. Especially, we show unstable cases of other controllers in comparison with this controller. Experimental tests are carried out in the laboratory using a two-story test structure with a hydraulic-type active mass damper.

  • PDF

A Fuzzy Robust Controller with Saturation for Robot Manipulators (로봇 매니퓰레이터의 포화요소를 갖는 퍼지견실 제어)

  • Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 1997
  • A robust controller design to corrdinate a robot manipulator under unknown system parameters and bounded disturbance inputs is presented in this paper. Generally, robust controllers require high input torque so that they may face input saturation in actual application due to the power limitation of the actuator. To solve this problem, an improved robust controller with saturated input torque using a fuzzy logic control is proposed. Numerical examples are shown to validate the proposed controller using two degree-of-freedom planar arm.

  • PDF

The design of a robust controller for nonlinear systems with input saturation (입력한계를 갖는 비선형시스템을 위한 견실제어기의 설계)

  • Choi, Hyeung-Sik;Lee, Min-ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.108-115
    • /
    • 1997
  • This paper presents a robust controller design for uncertain nonlinear systems with input saturation. In actual application, the robust controller may require a high input torque so that it faces input saturation due to power limitation of the system. The satruation problem may cause instability of the system. To improve this problem, a robust controller using a fuzzy logic control is proposed. The proposed controller keeps state errors bounded. To validate the proposed controller, an invert pendulum and its control system is set up. The experimental result shows bounded angular position errors under saturated input torques.

  • PDF

Experimental Verification on the Availability of Robust Saturation Controller for the Active Vibration Control of Building using AMD (AMD를 이용한 건물의 능동 진동 제어를 위한 강인 포화 제어기의 유용성에 관한 실험적 검증)

  • Lim, Chae-Wook;Moon, Seok-Jun;Park, Youn-Gjin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.83-90
    • /
    • 2006
  • In active vibration control of building, controller design considering both control input saturation of controller and parameter uncertainties of building is needed. In our previous research, we proposed a robust saturation controller which guarantees robust stability and control performance of the uncertain linear time-invariant system in the presence of control input saturation. In this paper, the availability of the robust saturation controller for the building with an active mass damper (AMD) system is verified through experimental tests. Experimental tests are carried oui using a two-story building model with a hydraulic-type AMD.

Decentralized Robust Adaptive Control for Robot Manipulators with Input Torque Saturation (입력 토크 포화를 갖는 로봇 매니퓰레이터에 대한 분산 강인 적응 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1160-1166
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive control scheme for robot manipulators with input torque saturation in the presence of uncertainties. The control system should consider the practical problems that the controller gain coefficients of each joint may be nonlinear time-varying and the input torques applied at each joint are saturated. The proposed robot controller overcomes the various uncertainties and the input saturation problem. The proposed controller is comparatively simple and has no robot model parameters. The proposed controller is adjusted by the adaptation laws and the stability of the control system is guaranteed by the Lyapunov function analysis. Simulation results show the validity and robustness of the proposed control scheme.

Disturbance observer-based robust backstepping load-following control for MHTGRs with actuator saturation and disturbances

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3685-3693
    • /
    • 2021
  • This paper presents a disturbance observer-based robust backstepping load-following control (DO-RBLFC) scheme for modular high-temperature gas-cooled reactors (MHTGRs) in the presence of actuator saturation and disturbances. Based on reactor kinetics and temperature reactivity feedback, the mathematical model of the MHTGR is first established. After that, a DO is constructed to estimate the unknown compound disturbances including model uncertainties, external disturbances, and unmeasured states. Besides, the actuator saturation is compensated by employing an auxiliary function in this paper. With the help of the DO, a robust load-following controller is developed via the backstepping technique to improve the load-following performance of the MHTGR subject to disturbances. At last, simulation and comparison results verify that the proposed DO-RBLFC scheme offers higher load-following accuracy, better disturbances rejection capability, and lower control rod speed than a PID controller, a conventional backstepping controller, and a disturbance observer-based adaptive sliding mode controller.

Stability of Saturation Controllers for the Active Vibration Control of Linear Structures (선형 구조물의 능동 진동 제어를 위한 포화 제어기의 안정성)

  • Moon, Seok-Jun;Lim, Chae-Wook;Huh, Young-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.93-102
    • /
    • 2006
  • Control input's saturation of active control devices for large structures under large external disturbances are often occurred. It is more difficult to obtain the exact values of mass and stiffness as structures are higher. The modelling errors between mathematical models and real structures must be also included as parameter uncertainties. Therefore, in active vibration control of civil engineering structures like buildings and bridges, the robust saturation controller design method considering both control input's saturation and parameter uncertainties of system is needed. In this paper, stabilities of linear optimal controller LQR, modified bang-bang controller, saturated sliding mode controller, and robust saturation controller among various controllers which have been studied and applied to active vibration control of buildings are investigated. Especially, unstable phenomena of the LQR, the modified bang-bang controller and the saturated sliding mode controller when the control input is saturated or parameter uncertainties exist are presented to show the necessity of the robust saturation controller. The robust stability of the robust saturation controller are shown through a numerical example of a 2DOF linear vibrating system and an experimental test of the two-story structure with an active mass damper (AMD).