• Title/Summary/Keyword: Robot Sensor

Search Result 1,589, Processing Time 0.027 seconds

Localization and Control of an Outdoor Mobile Robot Based on an Estimator with Sensor Fusion (센서 융합기반의 추측항법을 통한 야지 주행 이동로봇의 위치 추정 및 제어)

  • Jeon, Sang Woon;Jeong, Seul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Localization is a very important technique for the mobile robot to navigate in outdoor environment. In this paper, the development of the sensor fusion algorithm for controlling mobile robots in outdoor environments is presented. The multi-sensorial dead-reckoning subsystem is established based on the optimal filtering by first fusing a heading angle reading data from a magnetic compass, a rate-gyro, and two encoders mounted on the robot wheels, thereby computing the dead-reckoned location. These data and the position data provided by a global sensing system are fused together by means of an extended Kalman filter. The proposed algorithm is proved by simulation studies of controlling a mobile robot controlled by a backstepping controller and a cascaded controller. Performances of each controller are compared.

  • PDF

USN based sonar localization system for a fish robot (물고기 로봇을 위한 USN 기반 초음파 측위 시스템)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Park, Aa-Ron
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Localization is the most important functions in mobile robots. There are so many approaches to realize this essential function in wheel based mobile robots, but it is not easy to find similar examples in small underwater robots. It is presented the sonar localization system using ubiquitous sensor network for a fish robot in this paper. A fish robot uses GPS and sonar system to find exact localization. Although GPS is essential tool to obtain positional information, this device doesn't provide reasonable resolution in localization. To obtain more precise localization information, we use several Ubiquitous Sensor Networks (USN) motes with sonar system. Experimental results show that a fish robot obtains more detailed positional information.

Odometry Error Correction with a Gyro Sensor for the Mobile Robot Localization (자이로 센서를 이용한 이동로봇 Odometry 오차 보정에 관한 연구)

  • Park Shi-Na;Hong Hyun-Ju;Choi Won-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.65-67
    • /
    • 2006
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

Planning of Safe and Efficient Local Path based on Path Prediction Using a RGB-D Sensor (RGB-D센서 기반의 경로 예측을 적용한 안전하고 효율적인 지역경로 계획)

  • Moon, Ji-Young;Chae, Hee-Won;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.

Indoor Environment Recognition Method for Indoor Autonomous Mobile Robot (실내 자율주행 로봇을 위한 실내 환경 인식방법)

  • Lee Man-Hee;Cho Whang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.366-371
    • /
    • 2005
  • For an autonomous mobile robot localization, it is very important for the robot to be able to recognize indoor environment and match a detected object to an object defined within a map developed either online or of offline. Given the map defining the locations of geometric beacons like wall and corner existing in the robot operation environment, this paper presents a stereo ultrasonic sensor based method practically applicable in recognizing the geometric beacons in real-time. The stereo ultrasonic sensor used in the experiment consists of an ultrasonic transmitter and two ultrasonic receivers placed symmetrically about the transmitter Experimental results are provided to demonstrate that the proposed method is more efficient in recognizing wall and coner than the conventional method of using multiple number of transmitter-receiver pairs.

Obstacle Avoidance of Mobile Robot Based on Behavior Hierarchy by Fuzzy Logic

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.245-249
    • /
    • 2012
  • In this paper, we propose a navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using an ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process.

The Tip Position Measurement of a Flexible Robot Arm Using a Vision Sensor (비전 센서를 이용한 유연한 로봇팔의 끝점 위치 측정)

  • Shin, Hyo-Pil;Lee, Jong-Kwang;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.682-688
    • /
    • 2000
  • To improve the performance of a flexible robot arm one of the important things is the vibration displacement measurement of a flexible arm. Many types of sensors have been used to measure it, The most popular has been strain gauges which measures the deflection of the beam,. Photo sensors have also been for detecting beam displacement and accelerometers are often used to measure the beam vibration. But the vibration displacement can be obtained indirectly from these sensors. In this article a vision sensor is used as a displacement sensor to measure the vibration displacement of a flexible robot arm. Several schemes are proposed to reduce the image processing time and increase its accuracy. From the experimental results it is seen that the vision sensor can be an alternative sensor for measuring the vibration displacement and has a potential for on-line tip position control of flexible robot systems.

  • PDF

Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II (촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II)

  • Choi Byung-June;Lee Sang-Hun;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.

Development of Force/Moment Sensor using Force Sensing Resistor (Force Sensing Resistor를 이용한 힘/모멘트 센서 개발)

  • Choi, Myoung-Hwan;Lee, Woo-Won
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.89-96
    • /
    • 2001
  • A low cost force./moment sensor that can be used in the robot teaching task is presented. Force Sensing Resistor is used as the transducer. The principle of force/moment detection is explained, the architecture of the sensor is shown, and the measurement of the force/moment is presented. The force/moment sensor shown in this work is not meant to be used in a precise force/moment control, but it is intended to be used in the robot teaching where low accuracy can be tolerated.

  • PDF

Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor (자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어)

  • Jang, Jae-Seok;Kim, Min-Soo;Kim, Seong-Jin;Lee, Cheol-Keun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1205-1212
    • /
    • 2021
  • Robots that can actually help people a lot by dealing with dangerous tasks that are difficult for people to do, such as disaster situations, lifesaving, handling dangerous goods, and reconnaissance of dangerous areas, continue to become an issue. Therefore, in this paper, we intend to implement a mobile robot arm that can implement a human motion will on the robot arm to enable active response according to the situation and control the vehicle according to hand movements to give mobility. A controller is manufactured using a flex sensor and agyro sensor, and the roll and pitch values of the two gyro sensors are adjusted to control the angle of the robot arm and specify the vehicle direction. In addition, by designating the levels of the three flex sensors, the motor is operated according to hand movements, and a robot arm is implemented so that objects can be picked up and moved.