• Title/Summary/Keyword: Robot Kinematics

Search Result 410, Processing Time 0.023 seconds

Path Control for NeuroMate Robot in a Skull Drilling System (두개골 천공을 위한 NeuroMate 로봇의 경로 제어)

  • Chung, Yun-Chan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.256-262
    • /
    • 2013
  • This paper presents a linear path control algorithm for NeuroMate robot in a skull drilling system. For the path control inverse kinematics of the robot is analyzed and a linear interpolation algorithm is presented. A geometric approach is used for solving inverse kinematic equations for the robot. Four feasible solutions are found through the approach. The approach gives geometric insights for selecting the best solution from the feasible solutions. The presented linear interpolation algorithm computes a next position considering current velocity and remaining distance to the target position. Presented algorithm is implemented and tested in a skull drilling system.

Positioning Accuracy Improvement of Robots by Link Parameter Calibration (링크인자 보정에 의한 로보트 위치 정밀도 개선)

  • Cho, Eui-Chung;Ha, Young-Kyun;Lee, Sang-Jo;Park, Young-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.32-45
    • /
    • 1989
  • The positioning accuracy of robots depends upon a forward kinematics which relates the joint variables to the orientation and position of the robot extremity in the absolute coordinate system. The relationship between two connective joint coordi- nates of a robot, which is the basis of the kinematics, is defined by 4 Denavit-Hartenberg parameters. But manufacturing errors in machining and assembly process of robots lead to disctrepancies between the design parameters and the physical structure. Thus, improving the positioning accuracy of robots reguires the identification of the actual link parameters of each robot. In this study, the least-squares method is used to calibrate the link parameters and off-line parameter calibration software is developed. Computer simulation is done to study the dependence of the calibration performance upon the DOF of the robot and number of acquired data set used in the least-squares method. 3 DOF Robot/Controller and specially designed 3D coordinate measurer is made and experiment is carried out to verify the theoretical and computational analysis.

  • PDF

Integrated Control System of SCARA Robot Based on Off-Line Programming (오프라인 프로그래밍을 이용한 스카라 로봇의 통합제어 시스템 설계)

  • 정경규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.188-193
    • /
    • 2000
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95' graphic user interface i\environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, y Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Intergrated Control System Design of SCARA Robot Based-On Off-Line Programming (오프라인 프로그래밍을 이용한 스카라 로봇의 통합제어시스템 설계)

  • 한성현;정동연
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.21-27
    • /
    • 2002
  • In this paper, we have developed a Widows 98 version Off-Line Programming System which can simulate a Robot model in 3D Graphics space. The SCARA robot with four joints (FARA SM5)was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the OLP system in the Widows 98's GUI environment was also studied. The developing language is Microsoft Visual C++. Graphic 1ibraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

Integrated Control System Design of SCARA Robot Based on Off-Line Programming (오프라인 프로그래밍을 이용한 스카라 로봇의 통합제어 시스템 설계)

  • 정동연;한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.11 no.3
    • /
    • pp.21-27
    • /
    • 2002
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 ares SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Integrated Control System Design of SCARA Robot Based on OLP (OLP를 이용한 스카라 로봇의 통합제어 시스템 설계)

  • 정경규;정동연;신행봉;장영희;한성현;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.119-124
    • /
    • 2000
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Integrated Control System Design of Industrial Robot Based on Off-Line Programming (OLP를 이용한 산업용 로봇의 통합제어 시스템 설계)

  • 한덕기;김휘동;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.250-255
    • /
    • 2002
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 98 version. 4 axes industrial robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 98's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Kinematic Analysis of A Walking Robot Leg Based on Jansen Mechanism (얀센 메커니즘을 적용한 보행 로봇 다리의 운동학 해석)

  • KIM, YOUNG-DOO;BANG, JEONG-HYUN
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.424-428
    • /
    • 2016
  • This paper presents the kinematics of a walking robot leg based on Jansen mechanism. By using simple mathematics, all trajectories of walking robot leg links can be calculated. A foot point trajectory is used to evaluate the performance of a walking robot leg. Trial and Error method is used to find a best combination of link lengths under certain restrictions. All simulations are performed by Matlab. Ground score, drag score, step size, foot lift, instant speed, and average speed of foot point trajectories are used for selecting the best one.

  • PDF

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Design, Implementation, and Control of Two Arms of a Service Robot for Floor Tasks (바닥작업이 가능한 양팔 서비스 로봇의 기구학 설계, 제작 및 제어)

  • Bae, Yeong Geol;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • This paper presents the implementation and control of two arms of an indoor service robot for floor tasks. The robot arms are designed to have 6 degrees-of-freedom (DOF), but actually built to have 5 DOF. Forward and inverse kinematics of two arms are analyzed and simulated to confirm the kinematic analysis. Two arms are actually controlled based on the inverse kinematics. The right and left arms are separately controlled to follow different trajectories in order to make sure the functionality of both arms. Experimental studies are conducted to confirm the kinematic analysis and proper operation of two arms.