• Title/Summary/Keyword: Robot Implementation

Search Result 772, Processing Time 0.027 seconds

Analysis and Implementation of Traveling Surface Characteristics Test Equipment Using Optical Mice (광 마우스 기반 주행 표면 특성 시험 장치의 분석 및 구현)

  • Kim, Sungbok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.543-551
    • /
    • 2016
  • This paper presents the analysis and implementation of traveling surface characteristics test equipment using optical mice in connection with the velocity estimation of a mobile robot equipped with optical mice. In the traveling surface characteristics test equipment, a traveling surface sample is made to rotate toward stationary optical mice instead of a mobile robot equipped with optical mice moving over a traveling surface. First, the conceptual design and operational principle of the traveling surface characteristics test equipment is explained. Second, the velocity kinematics of the traveling surface characteristics test equipment is formulated; based on this, the parameter setting of the traveling surface characteristics test equipment is described. Third, the implementation of the traveling surface characteristics test equipment is described in detail, including the mechanical design and construction and the hardware and software development. Fourth, using the prototype of the traveling surface characteristics test equipment, the experimental results of the statistical parameter extraction for different traveling surface samples are given. Finally, some potential usages of the traveling surface characteristics test equipment are discussed.

Design of PM Motor Drive Course and DSP Based Robot Traction System Laboratory

  • Yousfi, Driss;Belkouch, Said;Ouahman, Abdellah Ait;Grenier, Damien;Dehez, Bruno;Richard, Eric
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.647-659
    • /
    • 2010
  • This paper presents a part of North Africa/Europe collaboration results in education to develop project-oriented courses in power electronics and motor drive field. The course aims to teach Permanent Magnet motor drives close to a real world project of significant size and depth so as to be motivational, namely mobile robot project. Particular skills, student will acquire, are those relative to the detailed design and implementation of PM motor controllers in DSP based rapid prototyping environment. Simulation work is completed using graphical modeling tools in Simulink/Plecs, while real-time implementation is achieved by means of eZdspF2812 board and Simulink/TI C2000 Embedded Target tools. This flexible development environment fit the robot traction system very well and provides exactly the functionality necessary for an efficient PM motor drives teaching as demonstrated by a set of simulation and experiments.

Implementation of Path Finding Method using 3D Mapping for Autonomous Robotic (3차원 공간 맵핑을 통한 로봇의 경로 구현)

  • Son, Eun-Ho;Kim, Young-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.168-177
    • /
    • 2008
  • Path finding is a key element in the navigation of a mobile robot. To find a path, robot should know their position exactly, since the position error exposes a robot to many dangerous conditions. It could make a robot move to a wrong direction so that it may have damage by collision by the surrounding obstacles. We propose a method obtaining an accurate robot position. The localization of a mobile robot in its working environment performs by using a vision system and Virtual Reality Modeling Language(VRML). The robot identifies landmarks located in the environment. An image processing and neural network pattern matching techniques have been applied to find location of the robot. After the self-positioning procedure, the 2-D scene of the vision is overlaid onto a VRML scene. This paper describes how to realize the self-positioning, and shows the overlay between the 2-D and VRML scenes. The suggested method defines a robot's path successfully. An experiment using the suggested algorithm apply to a mobile robot has been performed and the result shows a good path tracking.

Implementation and Motion Control of Three Linkage Bar lingers

  • Jungs, Seul;Kim, Jeonggu;Kim, Sungsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.1-107
    • /
    • 2002
  • $\textbullet$ Robot fingers $\textbullet$ Kinematics and dynamics of robot fingers $\textbullet$ 3 bar linkages $\textbullet$ Microprocessor control1er $\textbullet$ Serial communication $\textbullet$ Simulation Studies

  • PDF

Implementation of recognition sensor using thermal properties of object (열특성을 이용한 물체 인식 센서의 구현)

  • 박귀태;임영철;정우남;조경영;조진영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.438-442
    • /
    • 1988
  • In this paper, we describe a novel robot sensor designed to measure some of the thermal properties of a gripped object. The thermal conductivity of the object can be calculated by the proposed method. And the thermal sensor response enables robot system to discriminate between objects made of different materials.

  • PDF

Development of Actuator to Control the Vibration of Robot Arma (로보트 팔 진동 제어용 작동기 개발)

  • 김승호;박혁성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.27-31
    • /
    • 1988
  • A study has been carried out on the implementation of IMCA (Linear Moving Voice Coil Actuator) to a flexible robot arm modelled as cantilever beam. Control performances are evaluated by computer simulation and theoretical analysis is validated by experiments. From this study, it is proved that the LMVCA can be applied easily to the control system and suppress vibration effectively.

  • PDF

Multivariable control of robot manipulators using fuzzy logic (퍼지논리를 이용한 로봇 매니퓰레이터의 다변수제어)

  • 이현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.490-493
    • /
    • 1996
  • This paper presents a control scheme for the motion of a 2 DOF robot manipulator. Robot manipulators are multivariable nonlinear systems. Fuzzy logic is avaliable human-like control without complex mathematical operation and is suitable to nonlinear system control. In this paper, Implementation of fuzzy logic control of robotic manipulators shows. Algorithm has been performed with simulation packages MATRIXx and SystemBuild.

  • PDF

Design of a Control Architecture for an Internet-based Robot Control System

  • Nguyen, To-Dong;Oh, Sang-Rok;You, Bum-Jae;Myung Hwangbo;Lee, Brian-Kwang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.5-92
    • /
    • 2002
  • $\textbullet$ Introduction to the concept of the Mobile Robot working mode(online and of offline mode) $\textbullet$ Introduction to the Issac Robot Specification $\textbullet$ Discussion on the technology selection $\textbullet$ Description of the system and software architecture $\textbullet$ System implementation result. $\textbullet$ Conclusion and future work

  • PDF

Implementation and Permance Evaluation of RTOS-Based Dynamic Controller for Robot Manipulator (로봇 매니퓰레이터를 위한 RTOS 기반 동력학 제어기의 구현 및 성능평가)

  • 임동철;국태용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.716-719
    • /
    • 1999
  • In this paper, a real-time control system for robot manipulator is implemented using real-time operating system with capabilities of multitasking, intertask communication and synchronization, event-driven, priority-driven scheduling, real-time clock control, etc. The hardware system with VME bus and related devices is developed and applied to implement a dynamic learning control scheme for robot manipulator. Real-time performance of the proposed dynamic learning controller is tested for tasks of tracking moving objects and compared with the conventional servo controller.

  • PDF