• 제목/요약/키워드: Robot Control Data

검색결과 712건 처리시간 0.037초

비젼을 이용한 로봇 매니퓰레이터의 자세제어 (Motion Control of Robot Manipulators using Visual Feedback)

  • 지민석;이영찬;김진수;이강웅
    • 전자공학회논문지SC
    • /
    • 제43권1호
    • /
    • pp.13-20
    • /
    • 2006
  • 본 논문에서는 로봇 말단부에 장착된 카메라 환경에서 시각 궤환을 이용하는 로봇 매니퓰레이터의 자세제어 기법을 제안한다. 자세제어를 위한 기준 관절 속도와 관절 가속도는 외부루프의 특징점을 이용한 영상정보에서 생성된다. 영상평면상에서 특징점을 추종하기 위한 제어 입력은 로봇 동역학을 사용하였다. 영상평면상의 특징점과 관절 각속도 오차를 로봇 구동을 위한 제어입력에 포함시켜 파라미터 불확실성에 강인하도록 하였다. 시스템의 안정도는 Lyapunov 안정도 판별법을 이용하여 입증하였다. 제안된 제어기의 성능은 5-링크 2 자유도를 가지는 로봇에 대한 컴퓨터 시뮬레이션과 실험을 통해 검증하였다.

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

음향 신호를 이용한 수중로봇의 위치추정 (Localization of an Underwater Robot Using Acoustic Signal)

  • 김태균;고낙용
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.

3차원 로봇 레이저 스캐닝 시스템의 모델링과 캘리브레이션 (Modeling and Calibration of a 3D Robot Laser Scanning System)

  • 이종광;윤지섭;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.

누적된 거리정보를 이용하는 저가 IR 센서 기반의 위치추정 (Low-Cost IR Sensor-based Localization Using Accumulated Range Information)

  • 최윤규;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.845-850
    • /
    • 2009
  • Localization which estimates a robot's position and orientation in a given environment is very important for mobile robot navigation. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to increasing the success rate of low-cost sensor-based localization. In this paper, both the previous and the current data obtained from the IR sensors are used for localization in order to utilize as much environment information as possible without increasing the number of sensors. The sensor model used in the monte carlo localization (MCL) is modified so that the accumulated range information may be used to increase the accuracy in estimating the current robot pose. The experimental results show that the proposed method can robustly estimate the robot's pose in indoor environments with several similar places.

System Design and Control of an Autonomous Stair Climbing Robot

  • Kim, Dong-Hwan;Hong, Young-Ho;Kim, Sangsu;Jwa, Geun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.104.3-104
    • /
    • 2002
  • A quadruped stair robot introduced here plays a role in monitoring and moving some place where an operator can not reach or when he may not keep watching. It has several features that travels and poses variable position by four caterpillars and quadruped typed arms, transmits an image and command data via RF wireless and network communication. The robot can balance itself when it moves up and down on a slope by using the quadruped mechanism. The robot vision scans ahead before it moves, and the captured image is transferred to a main computer via a RF image module. The main computer analyzes the obstacle, and when it is found the obstacle, the robot avoids from the obstacle and keep moving f...

  • PDF

무선 멀티 홉 센서 네트워크와 이동로봇을 이용한 통합 화재 감시 시스템 (Integrated Fire Monitoring System Based on Wireless Multi-Hop Sensor Network and Mobile Robot)

  • 김태형;서강래;이재연;이원창
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.114-119
    • /
    • 2010
  • Network technology has been developed rapidly for digital service in these days. ZigBee, one of the IEEE 802.15.4 protocols, supporting local communication has become the core technology in the wireless network area. In this paper we designed an integrated fire monitoring system using a mobile robot and the ZigBee sensor nodes which are deployed to monitor fires. When a fire breaks out, the image information of the scene of a fire is transmitted by an autonomous mobile robot and we also monitor the current position of the robot. Furthermore, the data around the place where the fire breaks out and the positions of the sensor nodes can be transmitted to a server via the multi-hop communication in the real time.

Tracking Control of a Moving Target Using a Robot Vision System

  • Kim, Dong-Hwan;Cheon, Gyung-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.77.5-77
    • /
    • 2001
  • A Robot vision system with a visual skill so as take information for arbitrary target or object has been applied to auto-inspection and assembling system. It catches the moving target with the manipulator by using the information from the vision system. The robot needs some information where the moving object will place after certain time. A camera is fixed on a robot manipulator, not on the fixed support outside of the robot. It secures wider working area than the fixed camera, and it dedicates to auto scanning of the object. It computes some information on the object center, angle and speed by vision data, and can guess grabbing spot by arriving time. When the location ...

  • PDF

무게 변화에 따른 차륜형 밸런싱 로봇의 제어기 설계 및 실험연구 (Experimental Studies of Controller Design for a Car-like Balancing Robot with a Variable Mass)

  • 김현욱;정슬
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.469-475
    • /
    • 2010
  • 본 논문에서는 두 바퀴로 구동되는 역진자기반의 1인승 차량의 안정적인 균형을 위해 제어기를 설계하였다. 탑승자의 몸무게에 따라 전체 질량이 달라지므로 그에 따른 PID 제어기의 이득값을 실험적으로 구하였다. 이 때 탑승자의 몸무게에 따라 무게 중심이 달라지게 되는데, 이는 밸런싱 각도에 영향을 미치게 된다. 따라서, 안정적인 균형을 이루기 위해서는 몸무게에 따른 목표 밸런싱 각도를 수정하여 제어해야 한다. 다양한 탑승자의 몸무게를 측정하기 위해 차량에 체중계를 달고 측정된 체중 데이터를 컴퓨터로 전송하여 제어기에 적용하였다. 다양한 실험으로 얻은 정보를 사용하여 제어기의 게인 스케줄링을 통하여 보다 안정적인 균형을 유지할 수 있었다.

치매케어로봇 통합 프로그램의 개발 및 효과검증 -경증치매노인을 대상으로 (Development of Dementia-Care-Robot Integrated Program and Evaluation of Effectiveness -For the Elderly with Mild Dementia)

  • 오진환;이형화;전인희
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.330-340
    • /
    • 2020
  • The purpose of this study was to develop Dementia-Care-Robot integrated program based on group customization and to identify effects on IADL, depression, and attitudes toward robot. This study was nonequivalent control group pre-post test design. The subjects were 40 elders diagnosed with mild dementia participating in the dementia center daily program (20 in the experimental group and 20 in the control group). Each session lasted for 30 minutes, twice a week during 6 weeks. Data were collected from July 16 to November 7, 2019, and were analyzed using SPSS WIN 22.0 program to identify differences between groups for variables. After the program, the experimental group improved in IADL, depression, but there were no significant differences between the two groups. In attitude toward robot, the experimental group showed positive change to the robot, but the control group showed negative change to it, also there was a significant difference between the two groups. Findings indicate that integrated program using Dementia-Care-Robot has potential as a strategy to improve the symptoms of dementia and to delay the progression. It needs to be applied in the medical field through convergent approach of engineering.