• Title/Summary/Keyword: Ripple control

Search Result 823, Processing Time 0.027 seconds

A Commutation Torque Ripple Reduction for Brushless DC Motor Drives

  • Won, Chang-hee;Song, Joong-Ho;Ick Choy
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.174-182
    • /
    • 2002
  • This paper presents a comprehensive study on reducing commutation torque ripples generated in brushless DC motor drives with only a single do-link current sensor provided. In such drives, commutation torque ripple suppression techniques that are practically effective in low speed as well as high speed regions are scarcely found. The commutation compensation technique proposed here is based on a strategy that the current slopes of the incoming and the outgoing phases during the commutation interval can be equalized by a proper duty-ratio control. Being directly linked with deadbeat current control scheme, the proposed control method accomplishes suppression of the spikes and dips superimposed on the current and torque responses during the commutation intervals of the inverter. Effectiveness of the proposed control method is verified through simulations and experiments.

Fault Detection for thyristors of Power Converter Module in Control Rod Control System (원자로 제어봉구동장치 제어시스템의 전력변환기 사이리스터 고장 검출)

  • Kim, Choon-Kyung;Cheon, Jong-Min;Lee, Jong-Moo;Jung, Soon-Hyun;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.559-562
    • /
    • 2003
  • In this paper, we introduce a new method detecting thyristor faults of the power converter module in Control Rod Control System. When we control the currents in each coil of Control Rod Drive Mechanism by using the current control method, the current value can follow the current reference despite the faults like the missing phase or the diode acting. Comparing the fault current values with the normal current values, the bad transient characteristics of the abnormal current can make the operations of control rods incorrect. In this case, the information from the current trends cannot be enough to detect the fault occurrence in thyristors. Instead of the coil currents, the state of thyristors can be watched by measuring the coil voltages. In the existing system of Westinghouse type, the ripple detector takes charge of this task. But this detector has some shortcomings in the point of time for fault detection, we come to devise a new fault detection method solving the problems which belong to the ripple detector.

  • PDF

Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter (3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감)

  • Cho, Dae-Hyun;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.867-876
    • /
    • 2020
  • This paper proposes a neutral-point voltage ripple reduction of high frequency injection sensorless control of IPMSM fed by a three-level inverter. The high frequency voltage injection method has been successfully applied to sensorless control for IPMSM at low speed region. In the process of high frequency voltage injection sensorless control for IPMSM, the neutral-point voltage ripple is increased. It should be reduced because it distorts the output current and decreases a life time of DC-link capacitor. The proposed method in this paper reduces the neutral-point voltage ripple by compensating the reference voltage, and the compensation value is calculated simply with reference voltages and currents. The effectiveness of the proposed method is verified by simulation results.

Verification of Torque Disturbance Modeling of CMG Gimbal and Its Torque Ripple Reduction using Feed-Forward Control (제어모멘트자이로 김블의 토크 외란 모델링 검증 및 피드포워드 제어를 이용한 토크 리플 저감)

  • Lee, Junyong;Oh, Hwasuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this study, the generating of torque regarding the Control Moment Gyro (CMG) is proportional to the angular velocity of gimbal. This is the case because gimbal affects the attitude control of the satellite directly, and it is necessary to reduce the incidence of torque ripple of gimbal. In this paper, the cause of the torque ripple of gimbal is reviewed and mathematically modeled by assuming the friction imbalance of bearing, the magnetic field and the phase current imbalance of the motor. We are able to confidently estimate the modeling parameters of gimbal disturbance using a constant speed test, and then analyze the influence of applying feedforward control to our modeling. Additionally, the simulation results show that the torque ripple and angular velocity fluctuations are reduced when apply this modeling to the identified study parameters. Finally, we present the disturbance reduction technique using our disturbance modeling.

Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책)

  • Kim, Tae-Yun;Suh, Yong-Sug;Park, Hyeon-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

A Study of propulsion control algorithm of Tilting Train eXpress (틸팅 열차 추진시스템의 제어 알고리즘에 관한 연구)

  • Kim Hyung-Chul;Choi Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.800-805
    • /
    • 2005
  • In this study, control schemes are proposed for a propulsion system of TTX(Tilting Train eXpress). In developed traction converter, unity power factor control, compensation method of dc link voltage have been applied. Output current of converter contains harmonic ripple at twice input ac line frequency, which causes a ripple in the dc link voltage so that beatless control is developed in inverter system to reduce the pulsating torque current. This system is verified by the system modelling and prototype test.

  • PDF

A Study on the Switching Strategy of SRM for Variable Speed Control (SRM의 가변 속도 제어를 위한 스윗칭 기법에 관한 연구)

  • Lee, Tae-Gyoo;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1044-1046
    • /
    • 1993
  • This paper describes a switching strategy for variable speed control and low torque ripple of Switched Reluctance Motor(SRM). The main advantage of this strategy is simple control. Therefore it can be constructed easily. And a design principle of SRM is represented for the proposed switching strategy. The proposed switching method is tested by simulation and experiment on various SRM type. As a result, The SRM drive with the proposed scheme is effective in reducing the torque ripple and variable speed control.

  • PDF

Design of Linear Synchronous Motor for Thrust Force Ripple Reduction using Module Phase Set Shift (Module Phase Set Shift를 이용한 선형 동기 전동기의 추력 리플 저감 설계)

  • Ryu, Gwang-Hyeon;Lee, Hyung-Woo;Cho, Su-Yeon;Oh, Se-Young;Ham, Sang-Hwan;Im, Jong-Bin;Ahn, Han-Woong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.848-849
    • /
    • 2011
  • Rotating machines are using gears to change the rotary motion into the linear motion, on the other hand, linear motors have a accurate position control and excellent dynamic characteristics because of generating a thrust force directly. But the important problem, one of the linear motor is a high thrust force ripple. Thrust force ripple has a bad effect on the position accuracy and the dynamic characteristics, so it is necessary to reduce the thrust force ripple. Cogging is one of the cause that affect thrust force ripple. Cogging has some connection with the GCD between pole pitch and teeth pitch It is proposed method to reduce a thrust ripple of the linear motor that chamfering, skew, and so on. In this paper, the module phase set shift(MPSS) is used to reduce a thrust force ripple that has a similar effect to skew. And propose a method that reduce a thrust force ripple more by use of chamfering.

  • PDF

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • 김태성;안성찬;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.416-422
    • /
    • 2001
  • The BLDC(Brushless DC) Motor is characterized by linear torque to current and speed to voltage. It has low acoustic noise and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. However, when armature current is commutated, the current ripple is generated by the motor inductance components in stator windings and back-EMF. This current ripple caused to torque ripple. Therefore, it is difficult to apply the BLDC motor to a precision servo drive system. In this paper, a new current control algorithm using fourier series coefficients is proposed. This proposed algorithm can minimize torque ripple due to the phase current commutation of BLDC motor. Simulation and Experimental results prove the effectiveness at the Proposed algorithm through comparison with the conventional unipolar PWM method.

  • PDF

Nonlinear Adaptive Control for Linear Motor through the Estimation of Friction Forces and Force Ripples (마찰력 및 리플력 추정을 통한 리니어 모터의 비선형 적응제어)

  • Kim, Hong-Bin;Lee, Byong-Huee;Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.18-25
    • /
    • 2007
  • Linear motor is easily affected by load disturbance, force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbance. These nonlinear effects have been reduced for high-speed/high-accuracy position control either through the better motor design or via the better control algorithm that can compensate the nonlinear effects. In this paper, a nonlinear adaptive control algorithm is designed and applied for the position control of permanent magnet linear synchronous motor. In order to estimate and compensate the nonlinear effects such as friction and force ripple, the estimation and the nonlinear adaptive control laws are derived based on the virtual control input and a suitable Lyapunov function. The proposed controller is evaluated through the computer simulations. The control algorithm is also implemented to a DSP board and interfaced to the PMLSM for verifying the realtime control performance.