DOI QR코드

DOI QR Code

Verification of Torque Disturbance Modeling of CMG Gimbal and Its Torque Ripple Reduction using Feed-Forward Control

제어모멘트자이로 김블의 토크 외란 모델링 검증 및 피드포워드 제어를 이용한 토크 리플 저감

  • Lee, Junyong (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Oh, Hwasuk (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 이준용 (한국항공대학교 항공우주 및 기계공학과) ;
  • 오화석 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2017.12.15
  • Accepted : 2018.01.03
  • Published : 2018.02.28

Abstract

In this study, the generating of torque regarding the Control Moment Gyro (CMG) is proportional to the angular velocity of gimbal. This is the case because gimbal affects the attitude control of the satellite directly, and it is necessary to reduce the incidence of torque ripple of gimbal. In this paper, the cause of the torque ripple of gimbal is reviewed and mathematically modeled by assuming the friction imbalance of bearing, the magnetic field and the phase current imbalance of the motor. We are able to confidently estimate the modeling parameters of gimbal disturbance using a constant speed test, and then analyze the influence of applying feedforward control to our modeling. Additionally, the simulation results show that the torque ripple and angular velocity fluctuations are reduced when apply this modeling to the identified study parameters. Finally, we present the disturbance reduction technique using our disturbance modeling.

CMG의 발생 토크는 김블의 각속도에 비례하고 위성의 자세제어에 직접적인 영향을 미치기 때문에 김블의 토크 리플 저감이 필요하다. 본 논문에서는 토크 리플의 발생 원인을 베어링에 의한 마찰 불균형, 모터의 자기장과 상전류 불균형으로 가정하여 이를 수학적으로 모델링한다. 김블의 정속 구동 데이터를 통해 모델링의 파라미터를 추정하고 이를 이용하여 피드포워드 제어로 적용할 경우 영향성을 분석한다. 시뮬레이션을 통해 토크 리플과 각속도 변동이 저감되는 것을 확인하여 외란 모델링을 이용한 외란 저감 기법을 제시한다.

Keywords

References

  1. S. H. Lee. "Technology of Control Moment Gyroscope and its Industrial Trend," Journal of The Korean Society for Aeronautical & Space Sciences, 40(1), 86-92. 2012. https://doi.org/10.5139/JKSAS.2012.40.1.86
  2. J. Fang, H. Li, and B. Han, "Torque Ripple Reduction in BLDC Torque Motor With Nonideal Back EMF," IEEE Transactions on Power Electronics, vol.27, 4630-4637, 2012. https://doi.org/10.1109/TPEL.2011.2176143
  3. G. H. Kang, J. P. Hong, and G. T. Kim, "A Novel Design of an Air-Core Type Permanent Magnet Linear Brushless Motor by Space Harmonics Field Analysis," IEEE Transactions on Magnetics, vol.37, 3732-3736, 2001. https://doi.org/10.1109/20.952701
  4. S. H. Jang and N. H. Jo, "A Study on the Torque Ripple Reduction in Brushless DC Motors using Disturbance-Observer Controller," The transactions of the Korean Institute of Electrical Engineers 64.8 : 1217-1223, 2015. https://doi.org/10.5370/KIEE.2015.64.8.1217
  5. K. S. Lee and I. Choy, "Torque ripple reduction in Brushless DC Motor(BLDCM) using back-EMF observer," Proc. of the KIEE summer annual conference 41th: 952-953, 2010.
  6. B. J. Paul, "A Systems Approach to the Torque Control of a Permanent Magnet Brushless Motor," Master's Thesis, M.I.T., Dept. of Mechanical Engineering, 1985.
  7. Y. Mandel and G. Weiss, "Adaptive internal model based suppression of torque ripple in brushless DC motor derives," Systems Science and Control Engineering, vol.3, pp. 162-176, 2015. https://doi.org/10.1080/21642583.2014.999387
  8. N. Lakshmipriya, S. Manivel, and N. Sadeesh. "Modeling of SEPIC Fed PMBLDC motor for torque ripple minimization," International Journal of Research and Engineering: 10, 2015.
  9. J. S. Hsu, B. P. Scoggins, M. B. Scudiere, L. D. Marlino, D. J. Adams, and P. Pillay, "Nature and measurements of torque ripple of permanent-magnet adjustable-speed motors," No. CONF-9503180-1. Oak Ridge National Lab., TN (United States), 1995.
  10. S. John and C. M. Ong. "Modeling of electromechanical and electromagnetic disturbances in DC motors," Electromagnetic Compatibility, IEEE National Symposium on. IEEE, 1989.
  11. J. Kim, J. Yoon, J. Lee and H-S. Oh. "Performance Analysis of Reaction Wheel according to Bearing Preload and Oil Quantity," Journal of Aerospace System Engineering, vol. 10, no. 1, pp.35-42, Mar 2016. https://doi.org/10.20910/JASE.2016.10.1.35
  12. J. Lee, "Gimbal Control Disturbance Modeling of Control Moment Gyro," Master's thesis, Korea Aerospace University, 2016.
  13. D. Hanselman, "Brushless Motors:Magnetic Design, Performance, and Control," E-Man Press LLC, 2012.
  14. B. Bialke, "Microvibration Disturbance Sources in Reaction Wheels and Momentum Wheels," ESA SP Spacecraft Structures Materials and Mechanical Testing, Vol. 386, No. 2, pp.765-770, 1996.
  15. J. Kim, H. Lee, J. Yoo, and H-S. Oh. "Experimental Study on Effects of Speed Error Disturbance on Reaction Wheel Control," Journal of Aerospace System Engineering, vol. 10, no. 1, pp.95-102, Mar 2016. https://doi.org/10.20910/JASE.2016.10.1.95
  16. I. Boldea and S. A. Nasar, Linear Motion Electromagnetic Systems, 1st Ed, John Wiley and Sons, 1985.
  17. T. Mizuno and H. Yamada, "Magnetic Circuit Analysis of a Linear Synchronous Motor with Permanent Magnets," IEEE Trans. on Magnetics, Vol. 28, pp.3027-3029, 1992. https://doi.org/10.1109/20.179706
  18. J. Lee, J. Lee and H-S. Oh, "Control Disturbance Reduction using Gimbal Modeling of CMG," Proc. of the Fall conference of SASE, 2017.