• Title/Summary/Keyword: Rigid method

Search Result 1,793, Processing Time 0.025 seconds

Improving Accuracy of Measurement of Rigid Body Motion by Using Transfer Matrix (전달 행렬을 이용한 강체 운동 측정의 정확도 개선)

  • 고강호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.253-259
    • /
    • 2002
  • The rigid body characteristics (value of mass, Position of center of mass, moments and products of inertia) of mechanical systems can be identified from FRF data or vibration spectra of rigid body motion. Therefore the accuracy of rigid body characteristics is connected directly with the accuracy of measured data for rigid body motions. In this paper, a method of improving accuracy of measurement of rigid body motion is presented. Applying rigid body theory, ail translational and rotational displacements at a tentative point on the rigid body are calculated using the measured translational displacements for several points and transfer matrix. Then the estimated displacements for the identical points are calculated using the 6 displacements of the tentative Point and transfer matrix. By using correlation coefficient between measured and estimated displacements, we can detect the existence of errors that are contained in a certain measured displacement. Consequently, the improved rigid body motion with respect to a tentative point can be obtained by eliminating the contaminated data.

  • PDF

Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects (두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법)

  • Kim, Na-Eun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.

Balancing of a Rigid Rotor using Genetic Algorithms (유전 알고리즘을 이용한 강성회전체의 평형잡이)

  • Yang, Bo Seok;Ju, Ho Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.108-108
    • /
    • 1996
  • This paper describes a new approach to solve balancing of a rigid rotor. In this paper, the balancing of the rigid rotor using genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics is proposed. Under the assumption that the initial vibration values used to calculate correction masses contain errors, the influence coefficient method, the least squares method and a genetic algorithm are compared. The results show that the vibration amplitude obtained with the least squares method and the genetic algorithm is smaller than that obtained with the influence coefficient method.

Balancing of a Rigid Rotor using Genetic Algorithms (유전 알고리즘을 이용한 강성회전체의 평형잡이)

  • 양보석;주호진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.40-47
    • /
    • 1996
  • This paper describes a new approach to solve balancing of a rigid rotor. In this paper, the balancing of the rigid rotor using genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics is proposed. Under the assumption that the initial vibration values used to calculate correction masses contain errors, the influence coefficient method, the least squares method and a genetic algorithm are compared. The results show that the vibration amplitude obtained with the least squares method and the genetic algorithm is smaller than that obtained with the influence coefficient method.

  • PDF

The calculation of refined semi-analytic sensitivity based on the hybrid element (혼합 요소에서의 개선된 민감도 계산법)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.686-691
    • /
    • 2001
  • Structural optimization often require the evaluation of design sensitivities. The Semi Analytic method(SAM) is popular for shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements, the SA method shows severe inaccuracy. In this paper, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover, the error of the SA method caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms.

  • PDF

Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.453-469
    • /
    • 2004
  • In this article, a genetic algorithm based optimum design method is presented for non-linear steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures (TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of frames. The analyses cover both the non-linear behaviour of beam-to-column connection and $P-{\Delta}$ effects of beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid connections. Two design examples with various type of connections are presented to demonstrate the application of the algorithm. The semi-rigid connection modelling results in more economical solutions than rigid connection modelling, but it increases frame drift.

Retrieval of Non-rigid 3D Models Based on Approximated Topological Structure and Local Volume

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3950-3964
    • /
    • 2017
  • With the increasing popularity of 3D technology such as 3D printing, 3D modeling, etc., there is a growing need to search for similar models on the internet. Matching non-rigid shapes has become an active research field in computer graphics. In this paper, we present an efficient and effective non-rigid model retrieval method based on topological structure and local volume. The integral geodesic distances are first calculated for each vertex on a mesh to construct the topological structure. Next, each node on the topological structure is assigned a local volume that is calculated using the shape diameter function (SDF). Finally, we utilize the Hungarian algorithm to measure similarity between two non-rigid models. Experimental results on the latest benchmark (SHREC' 15 Non-rigid 3D Shape Retrieval) demonstrate that our method works well compared to the state-of-the-art.

Topology Design of Rigid-String Mechanism Using Constraint Force Design Method (구속조건 힘 설계기법을 이용한 강체와 스트링의 위상 최적설계)

  • Heo, Jae-Chung;Yoon, Gil-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.745-750
    • /
    • 2012
  • This study extends the constraint force design method allowing topology optimization for planar rigid-link and string mechanisms. To our best knowledge, by applying conventional machine and mechanism design theories, it is likely that it is possible to find out optimal locations of joints and lengths of rigid-links but somewhat difficult to find out optimal topology of rigid-links. To achieve optimal topology of rigid links, there is our previous contribution so called the new constraint force design method with the binary design variables determining the existence of the auxiliary forces imposing apparent lengths among unit masses. By adding new binary design variables, this research extends the constraint force design method to find out optimal mechanism consisting of stringy links as well as rigid links that seems impossible in the conventional machine and mechanism design theories.

An exact solution for free vibrations of a non-uniform beam carrying multiple elastic-supported rigid bars

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.399-416
    • /
    • 2010
  • The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-step beam carrying multiple rigid bars, with each of the rigid bars possessing its own mass and rotary inertia, fixed to the beam at one point and supported by a translational spring and/or a rotational spring at another point. Where the fixed point of each rigid bar with the beam does not coincide with the center of gravity the rigid bar or the supporting point of the springs. The effects of the distance between the "fixed point" of each rigid bar and its center of gravity (i.e., eccentricity), and the distance between the "fixed point" and each linear spring (i.e., offset) are studied. For a beam carrying multiple various concentrated elements, the magnitude of each lumped mass and stiffness of each linear spring are the well-known key parameters affecting the free vibration characteristics of the (loaded) beam in the existing literature, however, the numerical results of this paper reveal that the eccentricity of each rigid bar and the offset of each linear spring are also the predominant parameters.

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion in Eigenvalue Problem(II) - Eigenvalue Problem - (강체모드분리와 급수전개를 통한 고유치 문제에서의 준해석적 설계 민감도 개선에 관한 연구(II) -동적 문제 -)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.593-600
    • /
    • 2003
  • Structural optimization often requires the evaluation of design sensitivities. The Semi Analytic Method(SAM) fur computing sensitivity is popular in shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements. the SAM shows severe inaccuracy. In this study, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover. the error of the SAM caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms. Finally the present study shows that the refined SAM including the iterative method improves the results of sensitivity analysis in dynamic problems.