• Title/Summary/Keyword: Rigid block

Search Result 74, Processing Time 0.023 seconds

Prediction of Deformation and Load in Gear Forging (기어단조시 변형과 하중의 예측)

  • 박종진;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.156-164
    • /
    • 1996
  • As high capacity and precision forging presses have become available, it is possible to manufacture gears by forging technology. In gear manufacturing by forging, however, there are problems of designs of ides and preforms. In the present paper, two exampels are presented to show how the rigid plastic finite element method can be utilized to overcome the problems. The examples are spur gear forging and interanl-apline gear forging. Both analyses are three dimensional using eight node linear block elements with approximation that the involute curve can be represented by lines and arcs. Results of the analyses include metal flow in dies and required load during forging which aid to decide proper designs.

  • PDF

Nonlinear Dynamic Response Analysis of Slender Rigid Blocks Mounted on Seismic Isolation Systems (격리받침 위에 놓이 세장한 강체 블록의 비선형 동적거동 해석)

  • 김재관;채윤병
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.93-104
    • /
    • 2000
  • 적충되어 있는 다중 블록 시스템은 역사적 건물이나 문화재등에 자주 사용되고 있다. 이러한 구조시스템은 지진에 매우 취약하고, 특히 세장한 구조물인 경우에는 낮은 수준의 지반가속도에 대해서도 전도가 일어날 수 있다. 지진으로부터 이러한 구조물을 보호할 수 있는 방법중의 하나로써 지진격기받침의 사용을 들 수 있으나, 아직 격리받침이 설치되어 있는 다중블록의 거동에 대해서는 잘 알려지지 않는 실정이다. 이 논문에서는 각각 P-F 시스템, FPS, LRB 시스템이 설치되어 있을때의 세장한 강체 블록의 동적거동에 대해 살펴보았다. P-F 시스템과 FPS에서의 마찰모델은 Coulomb의 마찰법칙을 이용하였도, 상부구조물은 붙음(stick)모드와 록킹(rocking) 모드만이 존재하도록 가정하였다. 충격은 개별요소법(distinct element method, DEM)을 이용해 기술하였고, 조화입력운동에 대한 응답을 조사하였다.

  • PDF

Ambient vibration tests on a 19 - story asymmetric steel building

  • Shakib, H.;Parsaeifard, N.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Ambient vibration tests were carried out to evaluate the dynamic properties of an asymmetric steel building with semi-rigid connections. The test case has many non-structural elements, constructed in the city of Tehran (Iran). The tests were conducted to obtain natural frequencies, mode shapes and damping ratio of the structure and then Fourier transform were used to analyze the velocity records obtained from the tests. The first and second natural periods of the building were obtained as 1.37 s and 1.28 s through the test and damping ratio for the first mode was calculated as 0.047. However, Natural periods obtained from finite element model have higher values from those gained from ambient vibration. Then the model was calibrated by modeling of the in-fill masonry panels at their exact locations and considering the boundary conditions by modeling two blocks near the block No. 3, but the differences were existed. These differences may be due to some hidden stiffness of nonstructural elements in the low range of elastic behavior, showing the structure stiffer than it is in reality.

Semi-continuous beam-to-column joints at the Millennium Tower in Vienna, Austria

  • Huber, Gerald
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.159-170
    • /
    • 2001
  • The Millennium Tower is situated to the north of the center of Vienna. With a height of 202 m it is the highest building in Austria. Realization was improved by new methods. The tower is a typical example of mixed building technology, combining composite frames with a concrete core. Special attention has been paid to the moment connections between the slim floors and the column tubes resulting in a drastically reduced construction time and thin slabs. The semi-continuity has been considered in the design at ultimate and serviceability limit states.

Effects of Air Compressibility on the Hydrodynamic Forces of a Bag

  • Lee, Gyeong-Joong
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.14-28
    • /
    • 1995
  • The hydrodynamic problem when the pressurized bag submerges partially into water and oscillates was formulated by Lee(1992), and the solution method was given, In his formulation, however, the compressilbility of air was neglected and the pressure inside the bag was assumed to be constant. In this paper, the formulation was done including the air compressibility and the wall to block fling around phenomenon. The compression process was assumed to be a isothermal process for a static problem, isentropic process for a dynamic problem. And the stability was analyzed for the static problem. Through the various numerical calculations, the forces and the shape of the bag were compared with those of a rigid body case, constant pressure case, and variable pressure case.

  • PDF

Estimation of Hardness of Indentation Made with a Conical Indenter Using Numerical Slip-Line Field Technique

  • Biswas, Arup Kumar;Das, Santanu;Das, Sanjoy
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2020
  • When a rigid wedge is indented in to a semi-infinite block, the material is bulged up around the wedge that is generally called lip. The previous works in this filed considered the outer profile of the lip to be linear. But, present authors observed both experimentally and with the aid of finite element analysis that the profile of the lip is not always linear, and it depends on the angle of the wedge and friction parameters. So, in this work, attempts have been made to calculate hardness of indentation for different wedge angles and friction parameters. As hardness is intrinsic property of material, consideration of either linear or parabolic lip will not be affected much. A comparative study of hardness for linear and parabolic free surface profiles of the piled up material around the cone is analyzed in this work.

Acceleration Behavior of Rock Slope by Shaking Table Test (진동대 실험을 이용한 암반비탈면의 가속도 특성)

  • Kang, Jong-Chul;Yoon, Won-Sub;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.841-848
    • /
    • 2021
  • This study investigated the acceleration characteristics of rock slopes when earthquakes, which have not been studied much in Korea, occur. The rock slope was modeled with a similar raw of 1/20 in consideration of the height(10m), roughness, strength, and the joint dips(20°). After the completion of the model, a shaking table tests was conducted according to the magnitude of the acceleration and the type of seismic wave. The maximum acceleration was greater in the short-period seismic wave than in the long-period seismic wave, and the maximum acceleration was larger in the small acceleration. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. In the event of an earthquake smaller than the domestic earthquake-resistant maximum design acceleration(0.154g), safety management of the rock slope was required.

An Optimum Design of a Steering Column to Minimize the Injury of a Passenger (승객 상해의 감소를 위한 승용차 조향주의 최적설계)

  • Park, Y.S;Lee, J.Y.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF

Application of a Distinct Element Method in the Analyses of Rock Avalanche and Tunnel Stability in Blocky Rock Masses (암반사태와 블록성 암반내 터널의 안정성 해석을 위한 개별요소법의 적용성)

  • 문현구
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.212-223
    • /
    • 1992
  • The distinct element method(DEM) si well suited to the kinematic analysis of blocky rock masses. Two distinctive problems, a rock avalache and tunnel in jointed rock masses, are chosen to apply the DEM which is based on perfectly rigid behaviour of blocks. Investigated for both problems are the effects of the input parameters such as contact stiffnesses, friction coefficient and damping property. Using various types of models of the avalanche and tunne, an extensive parametric study is done to gain experiences in the method, and then to alleviate difficulties in determining parameter values suitable for a given problem. The coefficient of frictio has significant effects on all aspects of avalanche motion(travel distance, velocity and travel time), while the stiffnesses affect the rebounding and jumping motions after collision. The motion predicted by the models having single and mutiple blocks agrees well to the observations reported on the actual avalache. For the tunnel problem, the behaviour of the key block in an example tunnel is compared by testing values of the input parameters. The stability of the tunnel is dependent primarily on the friction coefficient, while the stiffness and damping properties influence the block velocity. The kinematic stability of a tunnel for underground unclear waste repository is analyzed using the joint geometry data(orientation, spacing and persistence) occurred in a tailrace tunnel. Allowing a small deviation to the mean orientation results in different modes of failure of the rock blocks around the tunnel. Of all parameters tested, the most important to the stability of the tunnel in blocky rock masses are the geometry of the blocks generated by mapping the joint and tunnel surfaces in 3-dimensions and also the friction coefficient of the joints particularly for the stability of the side walls.

  • PDF

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.