References
- D. Tabor, "The hardness of solids", Rev. Phys. Technol., vol.1, no.3, pp.145-179, 1970. https://doi.org/10.1088/0034-6683/1/3/I01
- W. Yu and J. P. Blanchard, "An elastic-plastic indentation model and its solutions", J. Mater. Res., vol.11, no.9, pp.2358-2367, 1996. https://doi.org/10.1557/JMR.1996.0299
- Y-T. Cheng, and Z. Li, "Hardness obtained from conical indentations with various cone angles", J. Mater. Res, vol.15, no.12, pp.2830-2835, 2000. https://doi.org/10.1557/JMR.2000.0404
- M. Mata and J. Alcala, "The role of friction on sharp indentation", J. Mech. Phys. Solids, vol.52, no.1, pp.145-165, 2004. https://doi.org/10.1016/S0022-5096(03)00075-9
- N. K. Mukhopadhyay and P. Paufler, "Micro- and nanoindentation techniques for mechanical characterisation of materials", Int. Mater. Rev., vol.51, no.4, pp.209-245, 2006. https://doi.org/10.1179/174328006X102475
- B. Poon, D. Rittel and G. Ravichandran, G., "An Analysis of Nanoindentation in Elasto-Plastic Solids", Int. J. Solids and Struc., vol.45, pp. 6399-6415, 2008. https://doi.org/10.1016/j.ijsolstr.2008.08.016
- J. Alcala and D. E. Ojos, "Extending the contact regimes to single-crystal indentations", C. R. Mecanique, vol.339, no.7-8, pp.458-465, 2011. https://doi.org/10.1016/j.crme.2011.05.004
- A. Ghosh, J. Arreguin-Zavala, H. Aydin, D. Goldbaum, R. Chromik and M. Brochu, "Investigating cube-corner indentation hardness and strength relationship under quasi-static and dynamic testing regimes", Mater. Sci. Engng.: A, vol.677, pp.534-539, 2016. https://doi.org/10.1016/j.msea.2016.08.067
- S. Hamada, M. Nakanishi, T. Moriyama and H. Noguchi, "Re-Examination of Correlation between Hardness and Tensile Properties by Numerical Analysis", Expr. Mech., vol.57, no.5, pp.773-781, 2017. https://doi.org/10.1007/s11340-017-0272-4
- R. Hill, E. H. Lee and S. J. Tupper, "The Theory of Wedge Indentation of Ductile Materials", Proc. R. Soc. Lond. A, vol.188, pp.273-289, 1947. https://doi.org/10.1098/rspa.1947.0009
- A. K. Biswas, S. Das and S. Das, "Micro-Indentation of Conical Rigid Wedge by Numerical Slip-Line Field Theory: A Hybrid Approach", Indian Science Cruiser, vol.31, no.3, pp.36-42, 2017, DOI:10.24906/isc/2017/v31/i3/155592.
- A. K. Biswas, S. Das, B. Das and S. Das, "A SlipLine Field Solution for Micro-Indentation of a Rigid Conical Wedge by Numerical Technique", International Journal of Innovative Research in Science, Engineering and Technology, vol.4, no.9, pp. 90-94, 2015.
- A. K. Biswas, S. Das, B. Das and S. Das, "Estimating Conical Indentation Load by Numerical Slip-line Field Technique", Journal of Structural Engineering, vol.45, no.1, pp.118-124, 2018.
- A. K. Biswas, S. Das and S. Das, "Comparisons Extends of Plastic Zones for Micro-Indentation of a Rigid Wedge to a Semi-Infinite Block by Finite Element Analysis and Numerical Slip-Line Field Techniques", Indian Science Cruiser, vol.33, no.6, pp.48-52, 2019. DOI: 10.24906/isc/2019/v33/i6/191730.
- A. K. Biswas, Santanu Das and Sanjoy Das, "Square Grid Deformation in Wedge Indentation: A New Mathematical Approach", SN Applied Sciences, vol.2, no.7, pp.1216/1-10, 2020, DOI: 10.1007/s42452-020-3054-z.
- J. Chakraborty, Theory of Plasticity, Elsevier Pub., 3rd Edition, 2006.
- J. B. Haddow and W. Johnson, "Indenting With Pyramids- I. Theory", International Journal of Mech. Science, vol.3, pp. 229-238, 1961. https://doi.org/10.1016/0020-7403(61)90023-6
- T. O. Mulhern, "The Deformation of Metals by Vickers-Type Pyramidal Indenter", Journal of Mechanics and Physics of Solids, vol.7, pp.85-96, 1959. https://doi.org/10.1016/0022-5096(59)90013-4
- A. K. Biswas, "Application of Slip-Line Field Theory and Finite Element Method for Analysis of Micro-Indentation of a Rigid Conical Wedge into a Semi-Infinite Plate and to Estimate Grinding Force Using Single Grit", PhD Thesis submitted to The University of Kalyani, India, 2020.