DOI QR코드

DOI QR Code

Estimation of Hardness of Indentation Made with a Conical Indenter Using Numerical Slip-Line Field Technique

  • Biswas, Arup Kumar (Department of Mechanical Engineering, Kalyani Government Engineering College INDIA) ;
  • Das, Santanu (Department of Mechanical Engineering, Kalyani Government Engineering College INDIA) ;
  • Das, Sanjoy (Department of Engineering and Technological Studies, University of Kalyani INDIA)
  • Received : 2020.10.13
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

When a rigid wedge is indented in to a semi-infinite block, the material is bulged up around the wedge that is generally called lip. The previous works in this filed considered the outer profile of the lip to be linear. But, present authors observed both experimentally and with the aid of finite element analysis that the profile of the lip is not always linear, and it depends on the angle of the wedge and friction parameters. So, in this work, attempts have been made to calculate hardness of indentation for different wedge angles and friction parameters. As hardness is intrinsic property of material, consideration of either linear or parabolic lip will not be affected much. A comparative study of hardness for linear and parabolic free surface profiles of the piled up material around the cone is analyzed in this work.

Keywords

References

  1. D. Tabor, "The hardness of solids", Rev. Phys. Technol., vol.1, no.3, pp.145-179, 1970. https://doi.org/10.1088/0034-6683/1/3/I01
  2. W. Yu and J. P. Blanchard, "An elastic-plastic indentation model and its solutions", J. Mater. Res., vol.11, no.9, pp.2358-2367, 1996. https://doi.org/10.1557/JMR.1996.0299
  3. Y-T. Cheng, and Z. Li, "Hardness obtained from conical indentations with various cone angles", J. Mater. Res, vol.15, no.12, pp.2830-2835, 2000. https://doi.org/10.1557/JMR.2000.0404
  4. M. Mata and J. Alcala, "The role of friction on sharp indentation", J. Mech. Phys. Solids, vol.52, no.1, pp.145-165, 2004. https://doi.org/10.1016/S0022-5096(03)00075-9
  5. N. K. Mukhopadhyay and P. Paufler, "Micro- and nanoindentation techniques for mechanical characterisation of materials", Int. Mater. Rev., vol.51, no.4, pp.209-245, 2006. https://doi.org/10.1179/174328006X102475
  6. B. Poon, D. Rittel and G. Ravichandran, G., "An Analysis of Nanoindentation in Elasto-Plastic Solids", Int. J. Solids and Struc., vol.45, pp. 6399-6415, 2008. https://doi.org/10.1016/j.ijsolstr.2008.08.016
  7. J. Alcala and D. E. Ojos, "Extending the contact regimes to single-crystal indentations", C. R. Mecanique, vol.339, no.7-8, pp.458-465, 2011. https://doi.org/10.1016/j.crme.2011.05.004
  8. A. Ghosh, J. Arreguin-Zavala, H. Aydin, D. Goldbaum, R. Chromik and M. Brochu, "Investigating cube-corner indentation hardness and strength relationship under quasi-static and dynamic testing regimes", Mater. Sci. Engng.: A, vol.677, pp.534-539, 2016. https://doi.org/10.1016/j.msea.2016.08.067
  9. S. Hamada, M. Nakanishi, T. Moriyama and H. Noguchi, "Re-Examination of Correlation between Hardness and Tensile Properties by Numerical Analysis", Expr. Mech., vol.57, no.5, pp.773-781, 2017. https://doi.org/10.1007/s11340-017-0272-4
  10. R. Hill, E. H. Lee and S. J. Tupper, "The Theory of Wedge Indentation of Ductile Materials", Proc. R. Soc. Lond. A, vol.188, pp.273-289, 1947. https://doi.org/10.1098/rspa.1947.0009
  11. A. K. Biswas, S. Das and S. Das, "Micro-Indentation of Conical Rigid Wedge by Numerical Slip-Line Field Theory: A Hybrid Approach", Indian Science Cruiser, vol.31, no.3, pp.36-42, 2017, DOI:10.24906/isc/2017/v31/i3/155592.
  12. A. K. Biswas, S. Das, B. Das and S. Das, "A SlipLine Field Solution for Micro-Indentation of a Rigid Conical Wedge by Numerical Technique", International Journal of Innovative Research in Science, Engineering and Technology, vol.4, no.9, pp. 90-94, 2015.
  13. A. K. Biswas, S. Das, B. Das and S. Das, "Estimating Conical Indentation Load by Numerical Slip-line Field Technique", Journal of Structural Engineering, vol.45, no.1, pp.118-124, 2018.
  14. A. K. Biswas, S. Das and S. Das, "Comparisons Extends of Plastic Zones for Micro-Indentation of a Rigid Wedge to a Semi-Infinite Block by Finite Element Analysis and Numerical Slip-Line Field Techniques", Indian Science Cruiser, vol.33, no.6, pp.48-52, 2019. DOI: 10.24906/isc/2019/v33/i6/191730.
  15. A. K. Biswas, Santanu Das and Sanjoy Das, "Square Grid Deformation in Wedge Indentation: A New Mathematical Approach", SN Applied Sciences, vol.2, no.7, pp.1216/1-10, 2020, DOI: 10.1007/s42452-020-3054-z.
  16. J. Chakraborty, Theory of Plasticity, Elsevier Pub., 3rd Edition, 2006.
  17. J. B. Haddow and W. Johnson, "Indenting With Pyramids- I. Theory", International Journal of Mech. Science, vol.3, pp. 229-238, 1961. https://doi.org/10.1016/0020-7403(61)90023-6
  18. T. O. Mulhern, "The Deformation of Metals by Vickers-Type Pyramidal Indenter", Journal of Mechanics and Physics of Solids, vol.7, pp.85-96, 1959. https://doi.org/10.1016/0022-5096(59)90013-4
  19. A. K. Biswas, "Application of Slip-Line Field Theory and Finite Element Method for Analysis of Micro-Indentation of a Rigid Conical Wedge into a Semi-Infinite Plate and to Estimate Grinding Force Using Single Grit", PhD Thesis submitted to The University of Kalyani, India, 2020.