• 제목/요약/키워드: Riemannian Geometry

검색결과 88건 처리시간 0.024초

SCREEN CONFORMAL LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM

  • Jin, Dae-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권3호
    • /
    • pp.271-276
    • /
    • 2009
  • We study the geometry of screen conformal light like hypersurfaces M of a semi- Riemannian manifold M. The main result is a characterization theorem for screen conformal lightlike hypersurfaces of a semi-Riemannian space form.

  • PDF

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.769-781
    • /
    • 2011
  • We study the geometry of half lightlike sbmanifolds M of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric metric connection subject to the conditions: (1) The screen distribution S(TM) is totally umbilical (geodesic) and (2) the co-screen distribution $S(TM^{\bot})$ of M is a conformal Killing one.

ISOSPECTRAL MANIFOLDS WITH DIFFERENT LOCAL GEOMETRY

  • Gordon, Carolyn S.
    • 대한수학회지
    • /
    • 제38권5호
    • /
    • pp.955-970
    • /
    • 2001
  • Two compact Riemannian manifolds are said to be isospectral if the associated Laplace-Beltrami operators have the same eigenvalue spectrum. We describe a method, based on the used of Riemannian submersions, for constructing isospectral manifolds with different local geometry and survey examples constructed through this method.

  • PDF

THEOREMS ON NULL-PATHS AND REDSHIFT

  • Wanas, M.I.;Morcos, A.B.
    • 천문학회지
    • /
    • 제46권3호
    • /
    • pp.97-102
    • /
    • 2013
  • In the present work, we prove the validity of two theorems on null-paths in a version of absolute parallelismgeometry. A version of these theorems has been originally established and proved by Kermak, McCrea and Whittaker (KMW) in the context of Riemannian geometry. The importance of such theorems lies in their applications to derive a general formula for the redshift of spectral lines coming from distant objects. The formula derived in the present work can be applied to both cosmological and astrophysical redshifts. It takes into account the shifts resulting from gravitation, different motions of the source of photons, spin of the moving particle (photons) and the direction of the line of sight. It is shown that this formula cannot be derived in the context of Riemannian geometry, but it can be reduced to a formula given by KMW under certain conditions.

SHARP INEQUALITIES INVOLVING THE CHEN-RICCI INEQUALITY FOR SLANT RIEMANNIAN SUBMERSIONS

  • Mehmet Akif Akyol;Nergiz (Onen) Poyraz
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1155-1179
    • /
    • 2023
  • Main objective of the present paper is to establish Chen inequalities for slant Riemannian submersions in contact geometry. In this manner, we give some examples for slant Riemannian submersions and also investigate some curvature relations between the total space, the base space and fibers. Moreover, we establish Chen-Ricci inequalities on the vertical and the horizontal distributions for slant Riemannian submersions from Sasakian space forms.

LIGHTLIKE HYPERSURFACES WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.409-416
    • /
    • 2009
  • In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for lightlike hypersurfaces M with totally umbilical screen distributions of a semi-Riemannian space form.

  • PDF

괴팅겐에서 핀슬러 기하가 탄생한 역사 (On the History of the Birth of Finsler Geometry at Göttingen)

  • 원대연
    • 한국수학사학회지
    • /
    • 제28권3호
    • /
    • pp.133-149
    • /
    • 2015
  • Arrivals of Hilbert and Minkowski at $G\ddot{o}ttingen$ put mathematical science there in full flourish. They further extended its strong mathematical tradition of Gauss and Riemann. Though Riemann envisioned Finsler metric and gave an example of it in his inaugural lecture of 1854, Finsler geometry was officially named after Minkowski's academic grandson Finsler. His tool to generalize Riemannian geometry was the calculus of variations of which his advisor $Carath\acute{e}odory$ was a master. Another $G\ddot{o}ttingen$ graduate Busemann regraded Finsler geometry as a special case of geometry of metric spaces. He was a student of Courant who was a student of Hilbert. These figures all at $G\ddot{o}ttingen$ created and developed Finsler geometry in its early stages. In this paper, we investigate history of works on Finsler geometry contributed by these frontiers.

A NEW CLASS OF RIEMANNIAN METRICS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD

  • Baghban, Amir;Sababe, Saeed Hashemi
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1255-1267
    • /
    • 2020
  • The class of isotropic almost complex structures, J𝛿,𝜎, define a class of Riemannian metrics, g𝛿,𝜎, on the tangent bundle of a Riemannian manifold which are a generalization of the Sasaki metric. This paper characterizes the metrics g𝛿,0 using the geometry of tangent bundle. As a by-product, some integrability results will be reported for J𝛿,𝜎.