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ABSTRACT

In the present work, we prove the validity of two theorems on null-paths in a version of absolute
parallelism geometry. A version of these theorems has been originally established and proved by Kermak,
McCrea and Whittaker (KMW) in the context of Riemannian geometry. The importance of such
theorems lies in their applications to derive a general formula for the redshift of spectral lines coming
from distant objects. The formula derived in the present work can be applied to both cosmological and
astrophysical redshifts. It takes into account the shifts resulting from gravitation, different motions of
the source of photons, spin of the moving particle (photons) and the direction of the line of sight. It
is shown that this formula cannot be derived in the context of Riemannian geometry, but it can be
reduced to a formula given by KMW under certain conditions.
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1. INTRODUCTION

In the context of the general theory of relativity
(GR), the redshift in the spectra of distant objects is a
metric phenomena. In other words, knowing the met-
ric of spacetime, one can calculate the redshift whether
it is astrophysical or cosmological. An alternative and
more general method for calculating the redshift is to
use the results of theorems on null geodesics, estab-
lished in Riemannian geometry, by Kermack, McCrea,
and Whittaker (1933, hereafter KMW). It is worth
mentioning that the applications of the two methods,
in the context of GR, give identical results. In both
methods, it is assumed that the trajectory of a photon
in a gravitational field is a null geodesic. This implies
the neglect of the effect of spin of the photon on its
trajectory. In calculating the redshift, the first method
is easier and more direct than the second, and since the
two methods are equivalent in the context of GR, au-
thors usually use the first method neglecting the second
one.

Recently, some pieces of evidence indicating proba-
ble dependence of trajectories of spinning particles on
their spin were reported. The first one is on the labora-
tory scale, which is the discrepancy between theoreti-
cal calculations and the results of the COW-experiment
(Overhauser & Colella 1974; Colella et al. 1975) and
Werner et al. (1988). The second one is on the galac-
tic scale concerning the arrival times of photons, neu-

Corresponding Author : A. B. Morcos

trinos (and gravitons!) from the supernova SN1987A
(Schramm & Truran 1990; Weber 1994; De Rujula
1987). As it is well known that, the idea of Param-
eterized Absolute Parallelism (PAP) is to hypothesize
a set on n-vectors in an n-dimensional space time, each
of which has a vanishing covariant derivative (the abso-
lute parallelism condition). These vectors are then used
as n- bins for an n-dimensional metric and in turn from
the foundation of an extended geometry with simulta-
neously non-vanishing curvature and torsion. Wanas
(1998) suggested a new path equation in the parameter-
ized absolute parallelism (PAP) geometry to compute
the trajectory of a spinning particle in a gravitational
field. Use of these equations which depend on the spin
of the particle has provided a satisfactory interpreta-
tion of the discrepancy in the COW experiment Wanas
et al. (2000), and can account for the time delay of
spinning particles coming from SN1987A (Wanas et al.
2002). If we use this equation to describe the trajec-
tory of photons that are spin one massless particles,
we encounter a problem concerning redshift calcula-
tions. That is, the metric of space-time is not the first
integral of the new path equation and the redshift is
no longer a metric phenomena. Consequently, one can
not calculate the redshift using any of the above men-
tioned methods. One way to solve this problem is to
develop theorems on the null path, similar to those of
KMW theorems, in order to apply them for obtaining
the redshift extracted from spinning particles. This is
the aim of the present work.
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For this aim, we give a brief account on KMW the-
orems in Section 2. In Section 3, we review the main
features of the spin dependent path equation. The va-
lidity of the KMW theorems is proved in PAP geometry
in Section 4. In Section 5, we derive a general formula
for redshift, taking into account the spin of the parti-
cle from which we extract the redshift. The work is
discussed in Section 6.

2. KMW THEOREMS

The following theorems on null geodesics were estab-
lished in KMW in Riemannian space Rn of dimensions
n, whose metric is given by,

dS2 = gµν dxµdxν . (1)

Consider the null geodesic Γ connecting the two neigh-
boring C0 and C1 in Rn. The tangent null vector
(transport vector in KMW) is defined by

ηρ def
=

dxρ

dλ
, (2)

where λ is a parameter characterizing Γ. The equation
for Γ is given by

dηρ

dλ
+

{

ρ

µν

}

ηµην = 0, (3)

where
{

ρ
µν

}

is the Christoffel symbol of the second type.

Eq. 3 follows from the Euler-Lagrange equation,

d

dλ

(

∂T

∂ηµ

)

−
∂T

∂xµ
= 0, (4)

upon taking,

T
def
=

1

2
gµν ηµην . (5)

Let Γ
′

be a null geodesic parallel to Γ and passing
through the point C

′

near C, and let ξσ denote the
vector CC′. Let a scalar J be defined as

J
def
= ηαξα, (6)

where ηα is the covariant form of the vector ηα.

The KMW -Theorems can be stated as follows,

Theorem (I)

“The scalar J given by Eq. 6 is independent of the
choice of the direction CC′, and is also independent of
the position of C on the null geodesic Γ.”
It depends only on the two null geodesics as a whole
and not on any particular point on them. This is the
first theorem which was rigorously proved by KMW.

Consider a null geodesic parallel to Γ, of which there
are ∞

n−1. If we form the scalar “J” corresponding to
ηµ and any of these null geodesics, we find that for any
particular value of “J” there are ∞

n−2 parallel null
geodesics.

Theorem (II)

“If the set of ∞
n−2 null geodesics lies in a Rn−1

which intersects a local flat subspace En−1, at C, in a
local flat subspace En−2, then En−2 is perpendicular to
the projection of Γ in En−1.”

As a consequence of these two theorems KMW were
able to derive the following formula for the redshift ex-
tracted from photons, assuming that a photon is mov-
ing along null geodesic of the metric between the emit-
ter at C1 and receiver at C0,

Z =
∆λ

λ
=

[ρµ ηµ]C1
− [̟µ ηµ]C0

[̟µ ηµ]C0

. (7)

where ρµ, ̟µ are the covariant form of the tangents to
the geodesics of the observers at C1, C0, respectively.

3. SPIN-DEPENDENT PATH EQUATION

It is well known that Riemannian geometry possesses
two types of the paths. The first is the geodesic path
and the second is the null geodesic. The equation of
these two paths can be written in the general form,

d2xµ

dp2
+

{

µ

αβ

}

dxα

dp

dxβ

dp
= 0, (8)

where p is a parameter characterizing the trajectory of
a massive or massless particle (cf., Adler et al. 1975).
This parameter may be related to the parameter S in
Eq. 1 by

dS2 = Edp2 (9)

where E is a numerical parameter taking the values

E = 0, for a null geodesic ,

E = 1, for a geodesic . (10)

Wanas et al. (1995) directed their attention to the
absolute parallelism space (AP-space), and by general-
izing the method given by Bazanski (1977, 1989), they
derived the following set of three path equations:

dJµ

dS−
+

{

µ

νσ

}

JνJσ = 0, (11)

dWµ

dSo
+

{

µ

νσ

}

W νW σ = −
1

2
Λ(νσ).

µ W νW σ, (12)

dV µ

dS+
+

{

µ

νσ

}

V νV σ = −Λ(νσ).
µ V νV σ, (13)

where Jµ, Wµ and V µ are the tangent vectore to the
corresponding phathes whose parameters are S−, S0
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and S+, respectively. Also Λα
µν is the torsion of the

AP geometry defined by

Λα
µν

def
= Γα

.µν − Γα
.νµ, (14)

where Γα
.νµ is the non-symmetric affine connection de-

fined as a consequence of the condition for AP.

Wanas (1998) defined a general expression for a con-
nection formed by taking linear combinations of the
available connections in the AP space. He mentioned
that the metricity condition is necessary but not suffi-
cient to define the Christoffel symbol. He generalized
the three path Eqs. 11, 12, and 13 in the following
equation,

dZµ

dτ
+

{

µ

νσ

}

ZνZσ = −bΛ(νσ).
µ ZνZσ. (15)

Here, b is a parameter given by b = n
2 αβ with n(=

0, 1, 2, ..., ), α and β being a natural number, the fine
structure constant and a numerical free parameter, re-

spectively. We also have Zµ def
= dXµ

dτ
, with τ being the

evolution parameter along the new general path (15)
associated with the general connection:

∇
α
. µν =

{

α

µν

}

+ b γα
. µν . (16)

The geometric structure characterized by the con-
nection in Eq. 16 is called the PAP geometry (Wanas
2000). It is worthy of mention that Eq. 15, repre-
sents a generalization of the three path equations given
above. This equation will be reduced to the equation of
geodesic (null geodesic upon reparameterization) in the
Riemannian geometry, when the parameter b = 0. It
has been shown that Eq. 15 can be used to express tra-
jectories of spinning test particles, massive or massless,
in a gravitational field.

4. THEOREMS ON NULL PATHS IN PAP
SPACES

Let Γ and Γ
′

be two neighboring null paths of the
type given by Eq. 15 defined in PAP space of dimen-
sions n. Let C be a point on Γ and C

′

be a neighboring
point on Γ′. Let ζµ be the vector CC

′

connecting the
two points. Let us define the following scalar,

J
def
= Zµζµ, (17)

where Zµ is the null tangent to the path (15) defined
at C. Then we can prove the following theorem:

4.1 Theorem (I)

“The scalar J is independent of the position of the
point C on the null path Γ and is also independent of

the choice of the direction CC
′

but depends on the two
null paths themselves.”
Now, as mentioned in the previous section, the equa-
tion of the null paths in the PAP Geometry is given by
Eq. 15 and the equation of null geodesic in the Rieman-
nian geometry is given by Eq. 8. It is clear that Eq.
15 tends to Eq. 8, if b = 0. Keeping in mind the fact
that for every absolute parallelism space there exists
an associated Riemannian one, we can relate the ob-
jects in Eq. 15 to the objects in Eq. 8 by the following
relations

Zµ = ηµ (1 + g(b)), (18)

τ = p (1 + f(b)), and (19)

ζµ = ζµ (1 + l(b)). (20)

Here, g(b), f(b) and l(b) are positive functions of the pa-
rameter b such that these functions tend to zero when b

goes to zero. Now let us evaluate the scalar J
def
= Zµζµ.

Using Eq. 19, we get

dp

dτ
=

1

(1 + f(b))
(21)

For simplicity, we let G for g(b), F for f(b) and L for
l(b), which leads to

d

dτ
(Zµζµ) =

1

(1 + F )

d

dp
(Zµζµ)

=
1

(1 + F )

d

dp
[ηµ (1 + G)

ζµ (1 + L)]

=
1

(1 + F )
(1 + G)(1 + L)

d

dp
(ηµ ζµ). (22)

Now recalling Eq. 6 and Theorem (I) of KMW, we get

d

dτ
(Zµζµ) = 0,

i.e., Zµζµ = constant. (23)

This result proves Theorem (I) on the null path of
the PAP space. Now, as an extension of the idea of
null path Γ passing through a given point C in the
PAP space Tn, one can find ∞

n−1 of null paths, in the
neighborhood of the point C, parallel to the null path
Γ. The second theorem can be stated as follows:

4.2 Theorem (II)

For a definite value of the scalar J, we have ∞
n−2

of parallel null paths lying in a subspace T(n−1), which
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intersects a local flat subspace E(n−1) of (n-1) dimen-
sions at the point C in a local (n-2)-dimensions flat
subspace E(n−2). This E(n−2) is perpendicular to the
projection of the null path Γ in E(n−1).

To prove this theorem, we shall assume that there
is no singularity at the point C or at any point in its
neighborhood. If we assume any rectangular axes at
C, such that the direction ratios along the null path Γ
are (λ1, λ2, ..., λn), then:

λ1
2 + λ2

2 + ... + λn
2 = 0. (24)

Therefore the tangent null-vector Zµ to the null path
at C has the components (mλ1, mλ2, ..., mλn), where
m is some constant. If the coordinates of the point C
are (x1, x2, ..., xn), and if we take the vector Zµ, which
is defined above, as (x1, x2, ..., xn), then the scalar J
takes the form:

J = (x1λ1 + x2λ2 + ... + xnλn)m, (25)

i.e.,

(x1λ1 + x2λ2 + .... + xnλn) =
J

m
. (26)

Due to Theorem (I), J remains constant wherever
(x1, x2, . . . , xn) lies in the hyperplane. That is, for any

other point C
′

on the null path Γ
′

, parallel to Γ, of
coordinates (x1 + kλ1, x

2 + kλ2, . . . , x
n + kλn), where

k is a variable parameter depending on the null path
Γ

′

, J remains constant. Therefore, if we take the com-
ponents of Zµ at the point C

′

on the null path Γ
′

to
be (x1 + kλ1, x2 + kλ2, . . . , xn + kλn), and substitute
in Eq. 25, we have

J = m(x1λ1 +kλ1
2 +x2λ2 +kλ2

2 + . . .+xnλn +kλn
2).

Using Eq. 24 we get the same Eq. 25. This means
that any one of the set of the null paths parallel to the
null path Γ must lie in the hyperplane given by Eq. 26,
in order to keep J constant. Now if we put x1 = 0,
it follows directly that all the points in which these
null paths cut any local subspace E(n−1) lie in a local
subspace E(n−2) given by

(x2λ2 + ..... + xnλn) =
J

m
.

This E(n−2) is perpendicular to the null path Γ whose
projection in E(n−1) is given by

x2

λ2
= . . . =

xn

λn

. (27)

Hence, the second theorem is proved.

Using the two previous theorems and the same idea
of KMW, we can write a general expression of the red-
shift. This expression depends essentially on the idea of

A B

Fig. 1.— Paths and Null-Pathes of the emitter and the
reciever.

the wave fronts, which are represented by a set of par-
allel null paths passing through the points of the wave
front. Their projections in the local subspace are per-
pendicular to this wave front (see Fig. 1). Therefore,
the actual wavelength is determined by the perpendic-
ular distance between the wave fronts corresponding to
two parallel sets of null paths. In other words, it is the
interval between the points of intersection of the two
local subspaces defined by the two sets of parallel null
paths and the observer’s world line.

5. GENERAL EXPRESSION OF REDSHIFT
IN PAP SPACE

In the previous section, we have shown that the two
theorems on null geodesics proved by KMW are also
applicable to the null paths given by Eq. 15. Now,
we are going to assume that the trajectory of a photon
with spin one in a gravitational field is spin-dependent
and given by Eq. 15. So, we can easily establish a
general formula for the redshift of spectral lines similar
to that given by KMW.

Consider a null path of the form of Eq. 15 connect-
ing the two points C1 and C0 at which the emitter A
and receiver B are located, respectively. The null path
Γ belongs to the same wave front observed by A and B,
as shown in Fig. 1. Let η1

µ and η0
µ be the components

of the transport null tangent to Γ at C1 and C0, respec-
tively. Let Γ

′

be a null path parallel to Γ, belonging to
the succeeding wave front, intersecting the world lines
of A and B at C′

1 and C′

0, respectively. If λ1 and λ0

are the wavelengths of the same spectral line as it is
given by the emitter A and received by the reciever B,
respectively, then the components of the vectors C1C1

′

and C0C0
′ are ρµ, ̟µ, which represent the components

of the unit tangents to the world lines of A and B, re-
spectively. These unit tangents are solutions of Eq. 15
for A and B, upon taking b = 0. The vectors ρµ and
̟µ are the values of the vector ξµ in Theorem (I) eval-
uated at C1 and C0, respectively, while η1

µ and η0
µ

represent the values of the vector Zµ, of the same the-
orem, evaluated at C1 and C0 as stated above. Now
applying Theorem (I) and equating the values of J at
C1 and at C0 we get
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λ1 ρµ ηµ
1 = λ0 ̟µ ηµ

0 (28)

i.e.,
λ0

λ1
=

ρµ ηµ
1

̟µ ηµ
0

. (29)

Thus,
∆λ

λ1
=

λ0 − λ1

λ1
=

ρµ ηµ
1

̟µ ηµ
0

− 1. (30)

This gives a general formula for the redshift of spectral
lines coming from a distant object.

6. CONCLUDING REMARKS

In the present work, we have investigated the valid-
ity of two important theorems on null geodesics in the
context of the PAP geometry. These two theorems are
important to establish a general formula for the red-
shift of spectral lines especially when the trajectories
of massless particles are spin dependent. Eq. 15 is the
equation representing such trajectories. This equation
can be used as an equation of motion in the context of
any field theory written in the AP-geometry including
GR (Wanas 1990).

In conclusion we can write the following general re-
marks:
(1) In the present work, we tried, as far as we could,
to use the same notations, as those used in the original
work of KMW in order to facilitate comparison.
(2) The path Eq. 15 can be used to represent the tra-
jectory of a test particle or the trajectory of a massless
particle, in a background gravitational field, upon ad-
justing the parameter τ . The right hand side of this
equation is suggested to represent a type of interaction
between the spin of the moving particle and the torsion
of the background gravitational field. The parameter
(b) is a spin dependent parameter (Wanas 1998).
(3) The two theorems on (15), when it represents null
paths, can be reduced to the original KMW theorems,
reviewed in Section 2, upon taking b = 0.
(4) Eq. 30 gives the redshift taking into account the
spin-torsion interaction. This equation appears to be
the same as that given by KMW, but the main differ-
ence is that the effect of the spin of the moving particle
will appear in the values of the null vectors η0

µ and η1
µ

which are solutions of Eq. 15 and not of the equation
of a null geodesic.
(5) KMW used formula (7) to get the Doppler shift. In
an attempt to interpret the solar limb effect (Mikhail,
et al. 2001), the use of Eq. 7 has been widened to ac-
count, not only for the relative radial velocity between
A and B (Doppler-shift), but also for:
(i) The effect of gravity (gravitational redshift).
(ii) The effect of the direction of the null-geodesic.
In addition to these effects, the formula (30) will ac-
count also for the effect of the spin-torsion interaction
on the value of the redshift.
(6) Formula (30) can be used to get the redshift

whether it is treated as a metric phenomena or not.
In future works, the redshift of spinning particles com-
ing from some celestial objects as pulsars and binary
pulsar, will be calculated.
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