References
- M. A. Akyol, Conformal semi-slant submersions, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 7, 1750114, 25 pp. https://doi.org/10.1142/S0219887817501146
- M. A. Akyol and R. Prasad, Semi-slant ξ⊥-, hemi-slant ξ⊥-Riemannian submersions and quasi hemi-slant submanifolds, In: Chen, B. Y., Shahid, M. H., Al-Solamy, F. (eds) Contact Geometry of Slant Submanifolds. Springer, Singapore.
- M. A. Akyol and R. Sari, On semi-slant ξ⊥-Riemannian submersions, Mediterr. J. Math. 14 (2017), no. 6, Paper No. 234, 20 pp. https://doi.org/10.1007/s00009-017-1035-2
- P. Alegre, B.-Y. Chen, and M. I. Munteanu, Riemannian submersions, δ-invariants, and optimal inequality, Ann. Global Anal. Geom. 42 (2012), no. 3, 317-331. https://doi.org/10.1007/s10455-012-9314-4
- M. E. Aydin, A. Mihai, and I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29 (2015), no. 3, 465-476. https://doi.org/10.2298/FIL1503465A
- H. Aytimur and C. Ozgur, Sharp inequalities for anti-invariant Riemannian submersions from Sasakian space forms, J. Geom. Phys. 166 (2021), Paper No. 104251, 12 pp. https://doi.org/10.1016/j.geomphys.2021.104251
- D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976.
- J.-P. Bourguignon, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino 1989 (1990), Special Issue, 143-163.
- J.-P. Bourguignon and H. B. Lawson Jr., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. http://projecteuclid.org/euclid.cmp/1103908963 103908963
- J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), no. 1, 125-138. https://doi.org/10.1017/S0017089500010156
- B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), no. 1, 135-147. https://doi.org/10.1017/S0004972700017925
- B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), no. 6, 568-578. https://doi.org/10.1007/BF01236084
- B.-Y. Chen, A general inequality for submanifolds in complex-space-forms and its applications, Arch. Math. (Basel) 67 (1996), no. 6, 519-528. https://doi.org/10.1007/BF01270616
- B.-Y. Chen, Riemannian submersions, minimal immersions and cohomology class, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 162-167 (2006). http://projecteuclid.org/euclid.pja/1135791768
- B.-Y. Chen, Examples and classification of Riemannian submersions satisfying a basic equality, Bull. Austral. Math. Soc. 72 (2005), no. 3, 391-402. https://doi.org/10.1017/S000497270003522X
- B.-Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Sci. Publ., Hackensack, NJ, 2011. https://doi.org/10.1142/9789814329644
- B.-Y. Chen, A. Mihai, and I. Mihai, A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature, Results Math. 74 (2019), no. 4, Paper No. 165, 11 pp. https://doi.org/10.1007/s00025-019-1091-y
- I. K. Erken and C. Murathan, Slant Riemannian submersions from Sasakian manifolds, Arab J. Math. Sci. 22 (2016), no. 2, 250-264. https://doi.org/10.1016/j.ajmsc.2015.12.002
- M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Sci. Publishing, Inc., River Edge, NJ, 2004.
- A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
- M. Gulbahar, S. Eken Meric, and E. Kilic, Sharp inequalities involving the Ricci curvature for Riemannian submersions, Kragujevac J. Math. 41 (2017), no. 2, 279-293. https://doi.org/10.5937/kgjmath1702279g
- M. Gulbahar, E. Kilic, S. K. Keles, and M. M. Tripathi, Some basic inequalities for submanifolds of nearly quasi-constant curvature manifolds, Differ. Geom. Dyn. Syst. 16 (2014), 156-167.
- R. S. Gupta, B. Y. Chen's inequalities for bi-slant submanifolds in cosymplectic space forms, Sarajevo J. Math. 9(21) (2013), no. 1, 117-128. https://doi.org/10.5644/SJM.09.1.11
- S. Ianu,s and M. Vi,sinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. http://stacks.iop.org/0264-9381/4/1317 https://doi.org/10.1088/0264-9381/4/5/026
- S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, in The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NJ, 1991.
- E. Kilic, M. M. Tripathi, and M. Gulbahar, Chen-Ricci inequalities for submanifolds of Riemannian and Kaehlerian product manifolds, Ann. Polon. Math. 116 (2016), no. 1, 37-56. https://doi.org/10.4064/ap3666-12-2015
- G. Koprulu and B. Sahin, Anti-invariant Riemannian submersions from Sasakian manifolds with totally umbilical fibers, Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 11, Paper No. 2150169, 11 pp. https://doi.org/10.1142/S0219887821501693
- J. W. Lee, Anti-invariant ξ⊥-Riemannian submersions from almost contact manifolds, Hacet. J. Math. Stat. 42 (2013), no. 3, 231-241.
- A. Mihai and C. Ozgur, Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections, Rocky Mountain J. Math. 41 (2011), no. 5, 1653-1673. https://doi.org/10.1216/RMJ-2011-41-5-1653
- I. Mihai and I. Presura, An improved first Chen inequality for Legendrian submanifolds in Sasakian space forms, Period. Math. Hungar. 74 (2017), no. 2, 220-226. https://doi.org/10.1007/s10998-016-0161-0
- M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. http://projecteuclid.org/euclid.mmj/1028999604 1028999604
- K.-S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), no. 3, 951-962. https://doi.org/10.4134/BKMS.2013.50.3.951
- N. (Onen) Poyraz, Chen inequalities on spacelike hypersurfaces of a GRW spacetime, Differential Geom. Appl. 81 (2022), Paper No. 101863, 11 pp. https://doi.org/10.1016/j.difgeo.2022.101863
- B. S,ahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447. https://doi.org/10.2478/s11533-010-0023-6
- B. S,ahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 54(102) (2011), no. 1, 93-105.
- B. S,ahin, Chen's first inequality for Riemannian maps, Ann. Polon. Math. 117 (2016), no. 3, 249-258. https://doi.org/10.4064/ap3958-7-2016
- B. Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Elsevier/Academic Press, London, 2017.
- C. Sayar, M. A. Akyol, and R. Prasad, Bi-slant submersions in complex geometry, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 4, 2050055, 17 pp. https://doi.org/10.1142/S0219887820500553
- M. M. Tripathi, Certain basic inequalities for submanifolds in (κ, µ)-spaces, in Recent advances in Riemannian and Lorentzian geometries (Baltimore, MD, 2003), 187-202, Contemp. Math., 337, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/conm/337/06061
- G.-E. Vˆilcu, On Chen invariants and inequalities in quaternionic geometry, J. Inequal. Appl. 2013 (2013), 66, 14 pp. https://doi.org/10.1186/1029-242X-2013-66
- B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165. http://projecteuclid.org/euclid.jdg/1214433303 https://doi.org/10.4310/jdg/1214433303
- B. Watson, G, G' -Riemannian submersions and nonlinear gauge field equations of general relativity, in Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.
- L. Zhang and P. Zhang, Notes on Chen's inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection, J. East China Norm. Univ. Natur. Sci. Ed. 2015 (2015), no. 1, 6-15, 26.