• Title/Summary/Keyword: Ricci-generalized pseudoparallel and 2-pseudoparallel submanifolds

Search Result 4, Processing Time 0.016 seconds

CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF PARA-KENMOTSU MANIFOLDS

  • Atceken, Mehmet
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • The purpose of this paper is to study invariant pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparallel submanifold of a para-Kenmotsu manifold and I obtained some equivalent conditions of invariant submanifolds of para-Kenmotsu manifolds under some conditions which the submanifolds are totally geodesic. Finally, a non-trivial example of invariant submanifold of paracontact metric manifold is constructed in order to illustrate our results.

CHARACTERIZATIONS FOR TOTALLY GEODESIC SUBMANIFOLDS OF (𝜅, 𝜇)-PARACONTACT METRIC MANIFOLDS

  • Atceken, Mehmet;Uygun, Pakize
    • Korean Journal of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.555-571
    • /
    • 2020
  • The aim of the present paper is to study pseudoparallel invariant submanifold of a (𝜅, 𝜇)-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a (𝜅, 𝜇)-paracontact metric manifold and we obtain new results contribute to geometry.

INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF AN ALMOST 𝛼-COSYMPLECTIC (𝜅, 𝜇, 𝜈)-SPACE

  • Mehmet Atceken;Gulsum Yuca
    • Honam Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.522-537
    • /
    • 2024
  • In this article, we research the conditions for invariant sub-manifolds in an almost 𝛼-cosymplectic (𝜅, 𝜇, 𝜈) space to be pseudo-parallel, Ricci-generalized pseudo-parallel and 2-Ricci-generalized pseudo-parallel. We think that the results for the relations among the functions will contribute to differential geometry.

PSEUDOPARALLEL INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS

  • Atceken, Mehmet;Yildirim, Umit;Dirik, Suleyman
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.275-284
    • /
    • 2020
  • The aim of this paper is to study the invariant submanifolds of (LCS)n-manifolds. We study pseudo parallel, generalized Ricci-pseudo parallel and 2-pseudo parallel invariant submanifolds of a (LCS)n-manifold and get the necessary and sufficient conditions for an invariant submanifold to be totally geodesic and give some new results contribute to differential geometry.