• Title/Summary/Keyword: Ribonucleoprotein

Search Result 63, Processing Time 0.018 seconds

Application of genome engineering for treatment of retinal diseases

  • Jo, Dong Hyun;Kim, Jeong Hun
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.315-316
    • /
    • 2018
  • Genome engineering with clustered regularly interspaced short palindromic repeats (CRISPR) system can be used as a tool to correct pathological mutations or modulate gene expression levels associated with pathogenesis of human diseases. Owing to well-established local administration methods including intravitreal and subretinal injection, it is relatively easy to administer therapeutic genome engineering machinery to ocular tissues for treating retinal diseases. In this context, we have investigated the potential of in vivo genome engineering as a therapeutic approach in the form of ribonucleoprotein or CRISPR packaged in viral vectors. Major issues in therapeutic application of genome engineering include specificity and efficacy according to types of CRISPR system. In addition to previous platforms based on ribonucleoprotein and CRISPR-associated protein 9 derived from Campylobacter jejuni, we evaluated the therapeutic effects of a CRISPR RNA-guided endonuclease derived from Lachnospiraceae bacterium ND2006 (LbCpf1) in regulating pathological angiogenesis in an animal model of wet-type age-related macular degeneration. LbCpf1 targeting Vegfa or Hif1a effectively disrupted the expression of genes in ocular tissues, resulting in suppression of choroidal neovascularization. It was also notable that there were no significant off-target effects in vivo.

Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains

  • Maher-Laporte, Marjolaine;DesGroseillers, Luc
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.344-348
    • /
    • 2010
  • Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.

A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes

  • Minh Tri Nguyen;Seul-Ah Kim;Ya-Yun Cheng;Sung Hoon Hong;Yong-Su Jin;Nam Soo Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1228-1237
    • /
    • 2023
  • The CRISPR-Cas system has emerged as the most efficient genome editing technique for a wide range of cells. Delivery of the Cas9-sgRNA ribonucleoprotein complex (Cas9 RNP) has gained popularity. The objective of this study was to develop a quantitative polymerase chain reaction (qPCR)-based assay to quantify the double-strand break reaction mediated by Cas9 RNP. To accomplish this, the dextransucrase gene (dsr) from Leuconostoc citreum was selected as the target DNA. The Cas9 protein was produced using recombinant Escherichia coli BL21, and two sgRNAs were synthesized through in vitro transcription to facilitate binding with the dsr gene. Under optimized in vitro conditions, the 2.6 kb dsr DNA was specifically cleaved into 1.1 and 1.5 kb fragments by both Cas9-sgRNA365 and Cas9-sgRNA433. By monitoring changes in dsr concentration using qPCR, the endonuclease activities of the two Cas9 RNPs were measured, and their efficiencies were compared. Specifically, the specific activities of dsr365RNP and dsr433RNP were 28.74 and 34.48 (unit/㎍ RNP), respectively. The versatility of this method was also verified using different target genes, uracil phosphoribosyl transferase (upp) gene, of Bifidobacterium bifidum and specific sgRNAs. The assay method was also utilized to determine the impact of high electrical field on Cas9 RNP activity during an efficient electroporation process. Overall, the results demonstrated that the qPCR-based method is an effective tool for measuring the endonuclease activity of Cas9 RNP.

Human Ribosomal Protein L18a Interacts with hnRNP E1

  • Han, Sun-Young;Choi, Mie-Young
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.143-148
    • /
    • 2008
  • Heterogeneous nuclear ribonucleoprotein E1(hnRNP E1) is one of the primary pre-mRNA binding proteins in human cells. It consists of 356 amino acid residues and harbors three hnRNP K homology(KH) domains that mediate RNA-binding. The hnRNP E1 protein was shown to play important roles in mRNA stabilization and translational control. In order to enhance our understanding of the cellular functions of hnRNP E1, we searched for interacting proteins through a yeast two-hybrid screening while using HeLa cDNA library as target. One of the cDNA clones was found to be human ribosomal protein L18a cDNA(GenBank accession number BC071920). We demonstrated in this study that human ribosomal protein L18a, a constituent of ribosomal protein large subunit, interacts specifically with hnRNP E1 in the yeast two-hybrid system. Such an interaction was observed for the first time in this study, and was also verified by biochemical assay.

Analysis of brain protein expression in developing mouse fetus (임신일령에 따른 생쥐 태아 뇌조직의 단백질 발현 양상 분석)

  • Han, Rong-Xun;Kim, Hong-Rye;Diao, Yun-Fei;Woo, Je-Seok;Jin, Dong-Il
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Development of mouse fetus brains can be defined morphologically and functionally by three developmental stages, embryo day (ED) 16, postnatal stage one week and eight weeks. These defined stages of brain development may be closely associated with differential gene expression rates due to limited cellular resources such as energy, space, and free water. Complex patterns of expressed genes and proteins during brain development suggests the changes in relative concentrations of proteins rather than the increase in numbers of new gene products. This study was designed to evaluate early protein expression pattern in mouse fetus brain. The mouse brain proteome of fetus at ED 15.5, and 19.5 was obtained using 2-dimensional gel electrophoresis (DE). Analysis of the 2-DE gels in pH 3-10 range revealed the presence of 15 differentially expressed spots, of which 11 spots were identified to be known proteins following MALDI-TOF analysis; 3 spots were up-regulated and 8 spots were down-regulated in the mouse fetus brain at ED 15.5. UP-regulated proteins were identified as MCG18238, isoform M2 of pyruvate kinase isozymes M1/M2, isoform 2 of heterogeneous nuclear ribonucleoprotein K, heterogeneous nuclear ribonucleoprotein H2, creatine kinase B-type, 40S ribosomal protein SA and hemoglobin subunit beta-H1. Down-regulated proteins were putative uncharacterized protein, lactoylglutathione lyase and secreted acidic cysteine rich glycoprotein. Our results revealed composite profiles of mouse fetus brain proteins related to mouse fetus development by 2-DE analysis implying possible roles of these proteins in neural differentiation.

A case of mixed connective tissue disease presenting initially with Raynaud's phenomenon (레이노드 증후군으로 초기 발현된 복합 교원성 질환 1예)

  • Kim, Soo Young;Choi, Young Seok;Kim, Young Ok;Woo, Young Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.8
    • /
    • pp.886-891
    • /
    • 2008
  • Mixed connective tissue disease (MCTD) is characterized by diverse symptoms including rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and dermatomyositis, associated with high titers of antibodies to extractable nuclear antigen (ENA), especially anti-ribonucleoprotein (anti-RNP) antibody. Since the first report of 25 cases with MCTD in adults, there have been only a few cases of MCTD reported in children. Here, we report a rare childhood case of MCTD in a 7-year-old girl presenting initially with Raynaud's phenomenon, swollen hands, and ulceration of the right index finger tip followed by alopecia and arthritis during follow-up.

Identification of the Interaction between Insulin-like Growth Factor Binding Protein-4 (IGFBP-4) and Heterogeneous Nuclear Ribonucleoprotein L (hnRNP L) (IGF결합 단백질-4(IGFBP-4)와 이질 핵 리보핵산단백질 L (hnRNP L)의 상호결합의 식별)

  • Choi, Mieyoung
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1311-1316
    • /
    • 2013
  • Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a major pre-mRNA binding protein and it is an abundant nuclear protein that shuttles between the nucleus and the cytoplasm. hnRNP L is known to be related to many cellular processes, including chromatin modification, pre-mRNA splicing, mRNA export of intronless genes, internal ribosomal entry site (IRES)-mediated translation, mRNA stability, and spermatogenesis. In order to identify the cellular proteins interacting with hnRNP L, this study performed a yeast two-hybrid screening, using a human liver cDNA library. The study identified insulin-like growth factor binding protein-4 (IGFBP-4) as a novel interaction partner of hnRNP L in the human liver. It then discovered, for the first time, that hnRNP L interacts specifically with IGFBP-4 in a yeast two-hybrid system. The authenticity of this two-hybrid interaction of hnRNP L and IGFBP-4 was confirmed by an in vitro pull-down assay.

Mammalian RNA Granules

  • Jayabalan, Aravinth Kumar;Ohn, Takbum
    • Biomedical Science Letters
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • RNA granules such as Stress Granules (SG) and P-Bodies (PB) are aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes induced by a wide range of stresses. Over the past decade, extensive studies described key components of RNA granules, their molecular interactions and signaling pathways require for their assembly and disassembly. However, researches defining their exact roles under stress conditions have not been performed so far, although several studies suggested their roles in neurodegenerative diseases recently. In this review, we provide an introduction about their basic properties, key components, and the dynamic nature for their assembly.

Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function

  • Chujo, Takeshi;Hirose, Tetsuro
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.889-896
    • /
    • 2017
  • Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.

An RNA Mapping Strategy to Identify Ribozyme-Accessible Sites on the Catalytic Subunit of Mouse Telomerase

  • Song, Min-Sun;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.32-35
    • /
    • 2007
  • Telomerase reverse transcriptase (TERT) is an enzymatic ribonucleoprotein that prolongs the replicative life span of cells by maintaining protective structures at the ends of eukaryotic chromosomes. Telomerase activity is highly up-regulated in 85-90% of human cancers, and is predominately regulated by hTERT expression. In contrast, most normal somatic tissues in humans express low or undetectable levels of telomerase activity. This expression profile identifies TERT as a potential anticancer target. By using an RNA mapping strategy based on a trans-splicing ribozyme library, we identified the regions of mouse TERT (mTERT) RNA that were accessible to ribozymes. We found that particularly accessible sites were present downstream of the AUG start codon. This mTERTspecific ribozyme will be useful for validation of the RNA replacement as cancer gene therapy approach in mouse model with syngeneic tumors.